
Introduction II
Overview

§ Today we will introduce multicore hardware (we will introduce
many-core hardware prior to learning OpenCL)

§ We will also consider the relationship between computer hardware and
programming

© J.S. Bradbury CSCI 4060U Lecture 2 - 1

Benefits of Multicore Hardware
Speedup
§ The goal of multiple processor is to increase performance

S(p) = ts (Execution time on a single processor)
tp (Execution time with p processors)

§ Linear speedup – “a speedup factor of p with p processors”
§ Is superlinear speedup (> p) possible?

§ i.e. when tp < ts/p

© J.S. Bradbury CSCI 4060U Lecture 2 - 2

Benefits of Multicore Hardware
Speedup
§ The goal of multiple processor is to increase performance

S(p) = ts (Execution time on a single processor)
tp (Execution time with p processors)

§ Linear speedup – “a speedup factor of p with p processors”
§ Is superlinear speedup (> p) possible?

§ i.e. when tp < ts/p – this would mean that the parallel parts of the program can be
executed faster in sequence then ts!

© J.S. Bradbury CSCI 4060U Lecture 2 - 3

Benefits of Multicore Hardware
Speedup
§ Cases where superlinear speedup is possible:

§ When multicore system processors have more memory than single
processor system

§ When hardware accelerators are used in the multiprocessor system and
not available in the single processor system

§ When a nondeterministic algorithm is executed (e.g., a solution can be
found quickly in one part of parallel implementation)

© J.S. Bradbury CSCI 4060U Lecture 2 - 4

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream
In

st
ru

ct
io

n
St

re
am

M
ul

tip
le

Si
ng

le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 5

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream
In

st
ru

ct
io

n
St

re
am

M
ul

tip
le

Si
ng

le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 6

Only instruction
level parallelism,
uniprocessor

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream
In

st
ru

ct
io

n
St

re
am

M
ul

tip
le

Si
ng

le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 7

Only instruction
level parallelism,
uniprocessor

Many core
processors most
common, Data level
parallelism – use
each instruction with
multiple data
elements

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream
In

st
ru

ct
io

n
St

re
am

M
ul

tip
le

Si
ng

le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 8

Only instruction
level parallelism,
uniprocessor

Many core
processors most
common, Data level
parallelism – use
each instruction with
multiple data
elements

Multicore processor,
Thread level
parallelism – each
processor has an
instruction with data

Parallel Architecture Taxonomy

SISD SIMD

MISD MIMD

Data Stream
In

st
ru

ct
io

n
St

re
am

M
ul

tip
le

Si
ng

le

Single Multiple

© J.S. Bradbury CSCI 4060U Lecture 2 - 9

Only instruction
level parallelism,
uniprocessor

Many core
processors most
common, Data level
parallelism – use
each instruction with
multiple data
elements

Multicore processor,
Thread level
parallelism – each
processor has an
instruction with data

Each processor
performs different
instructions on
the same data –
uncommon

Parallel Architecture Taxonomy
§ SIMD vs. MIMD

§ SIMD
§ Single Instruction Stream, Multiple Data Streams
§ Data-level parallelism can be exploited

§ MIMD
§ Multiple Instruction Streams, Multiple Data Streams
§ Thread-level parallelism can be exploited
§ Relatively low cost to build due to the use of same processors as those found in

single processor machines
§ In general MIMD is more flexible than SIMD

© J.S. Bradbury CSCI 4060U Lecture 2 - 10

MIMD
§ The flexibility of MIMD is demonstrated by the two categories of

MIMDs currently used:
1. Centralized Shared-Memory Architectures

(< 100 processors)
2. Distributed-Memory Architectures

(> 100 processors)

© J.S. Bradbury CSCI 4060U Lecture 2 - 11

Centralized Shared-Memory Architectures
§ SMP (Symmetric Shared-Memory Multiprocessors) or NUMA

(Non-Uniform Memory Access)
§ Example: Multi-core processors

§ Multiple processors on the same die

© J.S. Bradbury CSCI 4060U Lecture 2 - 12

Centralized Shared-Memory Architectures

© J.S. Bradbury CSCI 4060U Lecture 2 - 13

Memory I/O Devices

Cache

Processor

Cache

Processor

Cache

Processor

Cache

Processor

All processors
share memory
and I/O devices

Distributed-Memory Architectures
§ Two important aspects of these architectures is the processors

and the interconnection network
§ Example: Clusters

© J.S. Bradbury CSCI 4060U Lecture 2 - 14

Distributed-Memory Architectures
§ Can have a shared memory address space or multiple address

spaces
§ If shared memory address space

…communicate used load and store instructions.
§ If multiple address spaces

…communicate via message-passing
§Message Passing Interface (MPI) library used in C (and

other languages)

© J.S. Bradbury CSCI 4060U Lecture 2 - 15

Distributed-Memory Architectures

© J.S. Bradbury CSCI 4060U Lecture 2 - 16

I/O
Devices

Processor
+

Cache

Memory I/O
Devices

Processor
+

Cache

Memory

I/O
Devices

Processor
+

Cache

Memory I/O
Devices

Processor
+

Cache

Memory

Inter-
connected
Network

How do we take advantage of MIMD?
§ Multiple processes (programs) executing at the same time
§ A single program with multiple threads executing at the same time

§ Many general-purpose programming languages support multi-thread
concurrent programs!

§ Example: Java, C++

© J.S. Bradbury CSCI 4060U Lecture 2 - 17

Software Concurrency
§ Hardware improvements can have an affect on how we develop

software
§ Instruction level parallelism is typically independent of whether or

not software is sequential or concurrent
§ Thread level parallelism techniques like multicore are usually

dependent on the software being concurrent!

© J.S. Bradbury CSCI 4060U Lecture 2 - 18

Instruction-Level vs.
Thread-Level Parallelism

A program can
contain
multiple
threads

Thread-level
Parallelism
(high level)

Each thread
contains many

instructions

Instruction-level
Parallelism
(low level)

© J.S. Bradbury CSCI 4060U Lecture 2 - 19

Instruction-Level vs.
Thread-Level Parallelism

§ Multithreading is an instruction-level approach to multi-threaded
programs
§ Can be used on a single processor system

§ Switch between threads using fine-grained (between every instruction)
or coarse-grained (during an expensive stall) multithreading

§ Need separate PC for each thread
§ Also need to separate memory, etc.

§ Hyperthreading is an Intel approach using Simultaneous multithreading
(SMT)

© J.S. Bradbury CSCI 4060U Lecture 2 - 20

Symmetric Multicore Design

Source:
Fundamentals of
Multicore Software
Development

© J.S. Bradbury CSCI 4060U Lecture 2 - 21

Asymmetric Multicore Design

Source:
Fundamentals of
Multicore Software
Development

© J.S. Bradbury CSCI 4060U Lecture 2 - 22

Massively Parallel Systems
§ GPU Computing

§ 100s or 1000s of GPUs
§ Massively Parallel Processor Arrays (MPPAs)

§ Array of 100s of CPUs + RAM
§ Grid Computing

§ Nodes often perform different tasks
§ Cluster Computing

§ Nodes often perform the same task

CSCI 4060U Lecture 2 - 23© J.S. Bradbury

Introduction II
Summary
§ Overview of multicore hardware
References
§ “Computer Architecture: A Quantitative Approach” by Hennessy

& Patterson
§ “Fundamentals of Multicore Software Development” by Victor

Pankratius & Ali-Reza Adl-Tabatabai & Walter Tichy
Next time
§ Implicit Parallelism and OpenMP

© J.S. Bradbury CSCI 4060U Lecture 2 - 24

