
Automatically Predicting Bug Severity Early in the
Development Process

Jude Arokiam
Ontario Tech University
Oshawa, Ontario, Canada

jude.arokiam@ontariotechu.ca

Jeremy S. Bradbury
Ontario Tech University
Oshawa, Ontario, Canada

jeremy.bradbury@ontariotechu.ca

ABSTRACT
Bug severity is an important factor in prioritizing which bugs to �x
�rst. The process of triaging bug reports and assigning a severity
requires developer expertise and knowledge of the underlying soft-
ware. Methods to automate the assignment of bug severity have
been developed to reduce the developer cost, however, many of
these methods require 70-90% of the project’s bug reports as train-
ing data and delay their use until later in the development process.
Not being able to automatically predict a bug report’s severity early
in a project can greatly reduce the bene�ts of automation. We have
developed a new bug report severity prediction method that lever-
ages how bug reports are written rather than what the bug reports
contain. Our method allows for the prediction of bug severity at the
beginning of the project by using an organization’s historical data,
in the form of bug reports from past projects, to train the predic-
tion classi�er. In validating our approach, we conducted over 1000
experiments on a dataset of �ve NASA robotic mission software
projects. Our results demonstrate that our method was not only
able to predict the severity of bugs earlier in development, but it
was also able to outperform an existing keyword-based classi�er
for a majority of the NASA projects.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software; Software testing and debugging; • Com-
puting methodologies→ Machine learning.

KEYWORDS
bug severity, natural language processing, machine learning

ACM Reference Format:
Jude Arokiam and Jeremy S. Bradbury. 2020. Automatically Predicting Bug
Severity Early in the Development Process. In New Ideas and Emerging
Results (ICSE-NIER’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3377816.3381738

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7126-1/20/05. . . $15.00
https://doi.org/10.1145/3377816.3381738

1 INTRODUCTION
Even when using software development best practices, the occur-
rence of bugs in software is inevitable. When an incorrect or un-
expected behaviour manifests itself as a bug, it is important for an
organization to be able to quickly and e�ciently triage and �x the
bug. A common industry practice is to use bug reports to docu-
ment and manage known bugs. Upon detection, a developer will
submit a bug report that contains a bug description and any other
information that is useful to �xing the bug. Once a bug report has
been submitted, it is triaged and a bug severity is assigned (e.g.,
high, medium, low) – the assignment of a bug severity is a resource
intensive task. For example, the Mozilla bug database contains hun-
dreds of thousands of bug reports and receives 135 new reports per
day [6]. Manually assessing these reports can be time consuming
and requires knowledge of the software to ensure the correct bug
severities are assigned. Furthermore, it increases an organization’s
developer cost to build and maintain their software systems [1].

To reduce development costs associated with bug report triage,
automated approaches have been developed to predict bug severity
using natural language processing (NLP) the presence of keywords
in bug reports [2–4, 8, 10, 11]. These approaches commonly share a
similar severity prediction process: (1) text mining is used to collect
and pre-process bug reports; (2) a classi�er is trained that uses a
machine learning algorithm with bug reports that have already
had their severity assigned; (3) the classi�er is used to predict the
severity of a new bug report. While the prediction process is often
consistent, past approaches may vary based on the content mined
from the bug reports and the machine learning algorithm used for
training and prediction. A major drawback of past approaches is
that the text mining is usually based on project-speci�c keywords
(the content of the bug reports) and experiments have shown that
70-90% of a project’s total bug reports are required to properly train
the classi�er [2, 8]. The need for project-speci�c data to e�ectively
train the classi�er greatly reduces the bene�ts of automation.

We believe that a practical solution to predicting bug report
severity must be e�ective early in the software development pro-
cess – from the �rst occurrence of a bug. Having an e�ective bug
severity prediction method available earlier will allow more bug
report assessments to bene�t from automation and reduce costs.
Furthermore, it can be argued that the prediction of bug report
severity is the most bene�cial at the early stages of a project as this
is when developers have less expertise and insight with respect to
the software under development. We have developed a method that
satis�es the above requirement by leveraging an organization’s
common practices. For example, the bug reports of an organiza-
tion’s past projects should be written similarly to the reports that
will be created for a new project. Our hypothesis is that: How bug



ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea Arokiam and Bradbury

reports in past projects are written can be used to accurately predict
the severity of a bug report at the beginning of a new project.

In this paper we describe our new method to automatically pre-
dict the severity of a bug based on how bug report descriptions
are written. We train our method on data from past projects, thus
allowing bug severity prediction at the beginning of a new project.
Finally, we evaluate our method and compare it with an existing
keyword-based prediction approach. Our results demonstrate that
our method outperforms the existing keyword-based approach in
the majority of projects under evaluation.

2 BACKGROUND
Bug reports are used to keep track of bugs in a given software
project. Developers submit these reports into a bug tracking system
(e.g., JIRA1, Bugzilla2). The structure and content of bug reports
will vary based on organizational preferences and the bug tracking
system used. Examples of bug report content include a summary, a
bug description, code attachments and the name of the developer
reporting the bug. The summary and bug description are considered
the main indicators of predicting bug severity [3].

2.1 Bug Severity
Severity is “the impact the bug has on the successful execution of the
software system" [3]. Severity ratings derived from bug reports help
determine in what order bugs should be �xed (priority) and who
should be assigned to �x each bug. Bug severity categories can vary
based the organization and the bug tracking system being used:

• severe, non-severe;
• high, medium, low;
• trivial, minor, normal, major, critical, blocker; and
• ranges of numeric values.

2.2 Keyword-based Prediction of Bug Severity
Menzies and Marcus [8] developed SEVERIS that was designed as
a human-in-the loop tool for providing severity rating recommen-
dations for bug reports to test engineers. SEVERIS was evaluated
using a dataset of bug reports from �ve NASA robotic missions
stored in NASA’s Project and Issue Tracking System (PITS) [7].
The features extracted from the bug reports were textual summary
keywords and the classi�er used was rule learning. We have repro-
duced the SEVERIS tool and study and used the results as a baseline
for evaluating our prediction method (Section 4).

3 APPROACH
We have developed a new bug report severity prediction method3
that builds on the strengths of existing methods like SEVERIS while
also addressing the weaknesses. Our method requires no project-
speci�c training data and can be used to predict the bug severity
rating from the occurrence of the �rst bug. Furthermore our method
is general and can be adapted to use di�erent types of textual inputs.
The general process (see Figure 1) of our method is as follows:

1https://www.atlassian.com/software/jira/
2https://www.bugzilla.org/
3Our tool is open source and available at https://github.com/sqrlab/bug-severity-
prediction.

Figure 1: Bug report severity prediction process

(1) Extract bug summary and bug severity from bug reports in
past projects

(2) Convert extracted summaries to document vectors
(3) Train classi�er using past project data from the same orga-

nization
(4) Extract summary of a new bug report that has not yet been

assigned a severity
(5) Convert summary to document vector
(6) Input the new document vector into the classi�er to generate

a bug severity prediction

While the use of cross-project data has been used in software
defect prediction within source code [12], to the best of our knowl-
edge, it has not been applied to bug severity prediction using natural
language.

3.1 Input
The input data for the training phases of our method is the bug
report text summaries from one or more past projects. The training
input data will also have the assigned bug severity included. The
input data for the testing phase of our method is the text summary
for a single bug report in the current software project.

3.2 Pre-Processing and Feature Extraction
In order to use past project bug reports to train our classi�er, we
can no longer rely on project-speci�c keywords used in approaches
like SEVERIS. Instead the features we use must be appropriate for
cross-project data and contain information about how each bug re-
port summary is written. To capture how a bug report is written, we
decided to use Doc2Vec document vectors because document vec-
tors retain sentence semantics and word ordering and also because
creating a vector space of documents allows us to generalize [5].
Doc2Vec is a tool that converts text like phrases, sentences, para-
graphs or even entire documents into a document vector [5] which
is ideal for the textual summaries found in bug reports. Derived
from Word2Vec, there are two available models of Doc2Vec: dis-
tributed memory (DM) and distributed bag of words (DBOW) [9].
Le and Mikolov [5] experimented on both models and concluded
that that both models perform well for certain types datasets and
should be chosen accordingly. Their recommendation was to com-
bine both models for the best results and we have followed this
advice.



Automatically Predicting Bug Severity Early in the
Development Process ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Information contained in a NASA PITS bug report

Field Format Example

TIM_Id String ProjectA - TIM - 209
Subject (Summary) String Uninitialized Variables
Severity Numeric 3
Description String Filename sts_df.c
Initiation Date Date 3/25/07

Table 2: Number of bug reports for the NASA PITS projects

Project ID A B C D E

Number of Bug Reports 965 987 323 182 825

Figure 2: Distribution of bug report severities in NASA PITS
projects

3.3 Classi�er
Unlike past studies, we have not tied a speci�c classi�er to our
method. We have done this because we believe the classi�er should
be chosen for the speci�c use case and domain. With respect to bug
reports, many machine learning algorithms have been shown to
work well [2]. For our evaluation, we used the multi-layer percep-
tron because the performance of the algorithm was consistent in
previous studies and because the algorithm is general in nature [2].

4 EVALUATION
4.1 Dataset
For our experiments we used bug reports submitted for �ve NASA
robotic mission projects in the PITS dataset [7]. An example of
a PITS Bug Report is presented in Table 1. Each PITS project is
identi�ed by a letter ID, from A to E, and the bug report severity
ratings are from 1 (most severe) to 5 (least severe)4 (see Figure 2
for more details). We have removed reports that do not have an
assigned severity rating because we would not be able to validate
our predictions. After removing all unusable reports we are left
with 4026 bug reports (see Table 2). For the usable bug report, we
analyzed the bug report summaries (labelled Subject in the dataset).

4.2 Experiment Methodology
Our experiment was designed to test the validity of our bug sever-
ity prediction method using past project data to predict severity
4Severity 1 is not included in any of our experiments because it does not occur in the
dataset

Table 3: Top performing training data for each NASA PITS
project

Test Project Training Projects

pitsA pits{B, E}
pitsB pits{C, E}
pitsC pits{A, B}
pitsD pits{B, C, E}
pitsE pits{A, B}

Table 4: Precision, recall and f-measure of our prediction
method for each NASA PITS project using the training data
in Table 3

Project Precision Recall F-Measure

pitsA 0.28 0.41 0.33
pitsB 0.53 0.54 0.53
pitsC 0.86 0.81 0.84
pitsD 0.93 0.88 0.91
pitsE 0.55 0.57 0.56

in a new project. To ensure that we are using the best training
data, we ran our experiment with all possible combinations of past
projects. For example, we considered the following training data
when predicting bug severity in pitsA:

• single past projects (e.g., pitsB)
• pairs of past projects (e.g., pitsB & pitsC)
• triples of past projects (e.g., pitsB & pitsC & pitsD)
• quadruple of past projects (pitsB & pitsC & pitsD & pitsE)

For each combination of training and testing data we followed the
approach outlined in Section 3. In addition to evaluating our own
method, we also reproduced the SEVERIS approach and evaluation
using the methodology described in the original paper [8].

4.3 Performance Measures
For each experimentwe calculated the precision, recall andweighted
f-measure to measure performance. Precision is a score from 1.0
to 0.0 where 1.0 means that all instances that were predicted to
be of severity 3 are in fact severity 3. However, precision does not
measure the number of instances where the are severity 3 but were
predicted to be another severity. Recall is then used to measure this
and is also a score between 1.0 and 0.0. F-measure is the weighted
harmonic mean of the precision and recall [8]. We present the best
f-measure results from our experiments for each project as our
results (see Table 4). The projects that were used as training data
to produce the results can be found in Table 3.

4.4 Discussion
Our results in Table 4 con�rm that pitsC and pitsD performed
very well with f-measures of 0.84 and 0.91 respectfully. Futhermore,
pitsC, pitsD and pitsE all outperformed the SEVERIS approach with
respect to f-measure (see Figure 3). These results in particular are
surprising when you consider that our method’s training data did



ICSE-NIER’20, May 23–29, 2020, Seoul, Republic of Korea Arokiam and Bradbury

Figure 3: Comparing the f-measure of the SEVERIS tool with
our method on the NASA PITS dataset

Figure 4: Accuracy of our method on the NASA PITS dataset
with all combinations of training data for each project

not contain project-speci�c keyword data. From these results we
are able to con�rm that our method is both an e�ective bug severity
predictor and that the severity of a bug can indeed be predicted at the
beginning of a project using past project training data.

The results were not all positive and a further review of the data
in Table 4 shows that pitsA was especially poor performing with an
f-measure of 0.33. The distribution of bug severities in our dataset
(see Figure 2) provides insight as to why this may be the case –
almost all instances of severity 2 occur in pitsA (325 bugs) and are
sparse across the other projects (48 bugs combined). This result is
likely a case of an insu�cient number of training samples. Figure 4
shows that for pitsC and pitsD there are varying accuracy results
for di�erent combinations of past project training data. From these
results we are able to con�rm that our method using past project data
is only viable when the training data is representative of the test data.

The primary threat to the validity of our results is generalizability.
We have only evaluated our prediction method on the NASA PITS
dataset. However, we believe our method’s use of generic document
features, the extensive number of experiments conducted and the
size of the PITS dataset provides con�dence that our method has
merit in a more general context.

5 CONCLUSIONS
The assignment of severity ratings to bug reports requires both
developer time and expertise. While a number of automatic and
semi-automatic methods exist to predict bug severity ratings, these
methods often need to be trained on bug reports from the current

project in order to work e�ectively and thus are not able to perform
predictions until the later stages of development.We have presented
a new method to use characteristics of how past projects’ bug
reports are written to predict the severity of bugs found at the
beginning of a new project. Furthermore, our method does not rely
on any project- or domain-speci�c classi�er features. The main
limitation of our work is that we are reliant on the existence of
historic bug reports and the semantic similarity of these bug reports
with those of new projects.

There are three avenues of future work we plan to pursue:
(1) Evaluation of our method on additional open source datasets

(e.g., the Mozilla dataset) including cross-organizational ex-
periments within a given domain.

(2) Investigation of techniques to improve the selection of train-
ing data and exploration of the use of project data subsets for
training. For example, a potential approach maybe to �nd
the best training data for each bug severity instead of using
the data from an entire past project.

(3) Development of an approach to the cold start problem of
selecting what projects should be used as training data when
there is little or no information on the current project.

ACKNOWLEDGMENTS
We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), [funding reference
number 2018-06588].

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should �x this bug?.

In Proc. of the 28th Int. Conf. on Soft. Eng. (ICSE 2006). 361–370.
[2] Rajni Jindal, Ruchika Malhotra, and Abha Jain. 2017. Prediction of defect severity

by mining software project reports. Int. J. of System Assurance Engineering and
Management 8, 2 (2017), 334–351.

[3] Ahmed Lamkan�, Serge Demeyer, Emanuel Giger, and Bart Goethals. 2010. Pre-
dicting the severity of a reported bug. In Proc. of the 7th IEEE Work. Conf. on
Mining Software Repositories (MSR 2010). 1–10.

[4] Ahmed Lamkan�, Serge Demeyer, Quinten David Soetens, and Tim Verdonck.
2011. Comparing mining algorithms for predicting the severity of a reported bug.
In Proc. of the 15th European Conf. on Software Maintenance and Reengineering
(CSMR 2011). 249–258.

[5] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences
and documents. In Proc. of the 31st Int. Conf. on Machine Learning (ICML 2014).
1188–1196.

[6] C. Liu, J. Yang, L. Tan, and M. Ha�z. 2013. R2Fix: automatically generating bug
�xes from bug reports. In Proc. of the 6th Int. Conf. on Software Testing, Veri�cation
and Validation (ICST 2013). 282–291.

[7] Tim Menzies. 2008. pitsA, pitsB, pitsC, pitsD, pitsE [dataset]. https://doi.org/10.
5281/zenodo.{268475,439580,439581,268447,439582,268513}

[8] Tim Menzies and Andrian Marcus. 2008. Automated severity assessment of
software defect reports. In Proc. of the 24th IEEE Int. Conf. on Software Maintenance
(ICSM 2008). 346–355.

[9] Xin Rong. 2014. word2vec Parameter Learning Explained. arXiv preprint
arXiv:1411.2738 [cs.CL] (2014).

[10] Ferdian Thung, David Lo, and Lingxiao Jiang. 2012. Automatic defect categoriza-
tion. In Proc. of the 19th Work. Conf. on Reverse Eng. (WCRE 2012). 205–214.

[11] Tao Zhang, Jiachi Chen, Geunseok Yang, Byungjeong Lee, and Xiapu Luo. 2016.
Towards more accurate severity prediction and �xer recommendation of software
bugs. J. of Systems and Software 117 (2016), 166–184.

[12] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. 2009. Cross-project defect prediction: a large scale experiment
on data vs. domain vs. process. In Proc. of the 7th Joint Meeting of the European
Soft. Eng. Conf. and the ACM SIGSOFT Symp. on The Foundations of Soft. Eng.
(ESEC/FSE 2009). 91–100.


