
GidgetML: An Adaptive Serious Game for Enhancing
First Year Programming Labs

Michael A. Miljanovic
Ontario Tech University
Oshawa, Ontario, Canada

michael.miljanovic@ontariotechu.ca

Jeremy S. Bradbury
Ontario Tech University
Oshawa, Ontario, Canada

jeremy.bradbury@ontariotechu.ca

ABSTRACT
Serious games have become a popular alternative learning tool for
computer programming education. Research has shown that seri-
ous games provide benefits including the development of problem
solving skills and increased engagement in the learning process.
Despite the benefits, a major challenge of developing serious games
is their ability to accommodate students with different educational
backgrounds and levels of competency. Learners with a high-level
of competence may find a serious games to be too easy or boring,
while learners with low-level competence may be frequently frus-
trated or find it difficult to progress through the game. One solution
to this challenge is to use automated adaptation that can alter game
content and adjust game tasks to a level appropriate for the learner.
The use of adaptation has been successfully utilized in educational
domains outside of Software Engineering, but has not been applied
to serious programming games. This paper presents GidgetML,
an adaptive version of the Gidget programming game, that uses
machine learning to modify game tasks based on assessing and pre-
dicting learners’ competencies. To assess the benefits of adaptation,
we have conducted a study involving 100 students in a first-year
university programming course. Our study compared the use of
Gidget (non-adaptive) with GidgetML (adaptive) and found that
students who played Gidget during lab sessions varied significantly
in their performance while this variance was significantly reduced
for students who played GidgetML.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; • Applied computing → Computer games; • Computing
methodologies→ Machine learning.

KEYWORDS
Computer education, programming, education, serious games, ma-
chine learning, software engineering, computer science, game-
based learning
ACM Reference Format:
Michael A.Miljanovic and Jeremy S. Bradbury. 2020. GidgetML: AnAdaptive
Serious Game for Enhancing First Year Programming Labs. In Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7124-7/20/05. . . $15.00
https://doi.org/10.1145/3377814.3381716

Engineering Education and Training (ICSE-SEET’20), May 23–29, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3377814.3381716

1 INTRODUCTION
Gonczi [5] describes the development of ’competency-based’ learn-
ing to be where “courses are defined in terms of outcomes to be
achieved by students, and assessment of learners is based on the
criteria expressed in competency standards." Although this varies
from country to country, a competency-based approach to learning
has many benefits over traditional approaches, particularly for the
purposes of linking practice to theory and enhancing student adap-
tivity. An example of an activity that can give learners practical
experience with educational content when included as an activity
in a structured course is a serious game.

The use of serious games has been shown to support student-
centered learning, independent learning, actively engage students
in their learning process, improve students’ self-learner skill, and
develop problem solving skills [18]. Unfortunately, serious games
have to deal with the challenge of player retention, especially when
players come from a diverse set of backgrounds and skill levels.
The concept of flow [3], which is the suitable increase of challenge
with respect to player skill, is extremely important to ensuring that
players remain engaged with the game experience.

One way to handle the challenge of dynamically accommodat-
ing players of different skill levels is the use of adaptation [6]. By
creating a model of a player’s experience, designers can use their
game data to alter game content or change parameters, in order to
better challenge skilled learners or reduce the difficulty for learners
who are struggling. This is a form of stealth assessment [16], which
allows the evaluation of learners to occur behind the scenes in a
way that does not disrupt a player’s flow in the game.

The wealth of existing games that help players to learn computer
science conceptions provides a great opportunity to make adaptive
modifications without having to make new games from scratch.
Unfortunately, not all existing games are necessarily suitable for
adaptation. Many serious games published in the literature are
not open sourced or available to play, and others simply do not
feature a style of gameplay that can be adapted without significant
modifications to the source code.

One of the most well known games in the literature for learning
computer programming is Gidget, developed by Michael Lee and
Amy Ko [9]. The Gidget game follows a task-based sequence of
gameplay that is uniform for all players, which means it is poten-
tially a good candidate for automated adaptation. Thus, our first
research question is:

• RQ1 - Does Gidget benefit from adaptation?

https://doi.org/10.1145/3377814.3381716
https://doi.org/10.1145/3377814.3381716
https://doi.org/10.1145/3377814.3381716

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Michael A. Miljanovic and Jeremy S. Bradbury

In order to evaluate the effectiveness of the adaptation, we need
to look out how player performance changes over the course of
gameplay. Specifically, we expect to see that variance among players
should be more consistent, as the task content is set to a level of
difficulty that is appropriate for them based on their competence.
We created an adaptive version of Gidget called GidgetML, in the
hopes of answering the second research question:

• RQ2 - Is GidgetML effective at adapting to a learner’s level
of competency?

In the subsequent sections of this paper, we will discuss some
background of serious game and adaptivity literature, how we
implemented adaptivity into Gidget, the methodology behind our
experimental design, our study’s results, and some discussion of
our findings.

2 BACKGROUND
The use of educational games for programming has grown im-
mensely over time, as designers have been able to increasingly
leverage the power of game development practices. Vahldick et
al. [17] categorized 40 serious programming games based on type,
platform, educational content, and programming language. We pre-
viously [14] reviewed a different selection of 49 serious program-
ming games as well as the research questions and instruments used
to evaluate them. From both of these reviews, one of the games
that stood out as potentially suitable for the current study was
Gidget [9].

Gidget (see Figure 1) is a 2D puzzle game based around helping
students learn to problem solve and fix bugs based on faulty starter
code. The goal of the game is to help the titular character to save
animals and clean toxic waste through a set of instructions that
are followed in sequence. As players proceed through the 18 levels
of the game, they learn new commands for Gidget and practice
interacting with the environment of the game. Each level requires
the player to complete a number of specific tasks efficiently before
Gidget runs out of energy. The creators of Gidget found that the
game was successful at teaching programming to learners who did
not necessarily want to learn programming, and that the debugging-
based approach was helpful for avoiding the problem of needing
programming knowledge before playing the game [8]. Gidget has
been shown in several studies to improve learning [9] and engage-
ment [11], which is why it was chosen as a potentially suitable
game for adaptation.

Although programming games have yet to fully leverage the
power of automatic adaptation, there are existing games from
other educational domains that have incorporated different forms
of adaptivity. The 80Days project [4], which focuses on teaching
geographical content and environmental issues, uses Confidence-
based Knowledge Space Theory and a rule building strategy to
choose a path through the game that is appropriate for a given
player. SeaGame, a multiplayer game designed to promote best
practices in sea-related activities, was used to show how to assign
tasks to players using an adaptive experience engine based on com-
putational intelligence [1]. We chose an approach similar to that
of the ELEKTRA project [7], as Gidget did not lend itself well to
the creation of a large number of additional task content, and the

use of micro-adaptations was something that could be efficiently
implemented in Gidget’s source code.

The current paper follows the adaptive game methodology out-
lined in our previous work [13]. Themethodology outlines a general
strategy for how to identify an existing adaptable game, create mod-
els of student and task behaviour, build an implementation of an
adaptive algorithm into the game, and evaluate the results (see
Figure 2). The proposed gameplay sequence for players is to begin
with a number of training tasks to collect enough player data to
begin adaptation. After this, the data is used to initialize a model
of the player’s behavior, which is used to repeatedly adapt tasks.
Changes in player behavior are measured during each task, and
the model is updated to include this new information. Subsequent
tasks are then adapted according to the player model, for the rest
of the gameplay sequence. More details are available in Section 4.1.

In order to evaluate students in our study, we chose to use a
combination of game play data and questionnaires that would as-
sess learning and engagement. The questionnaires in our study
include a replication of a questionnaire from a previous study on
Gidget [10], as well as the Game Experience Questionnaire [2].
The Game Experience Questionnaire has been analyzed for reli-
ability, validity, and functionality using a combination of Rasch
modeling [15] as well as behavioural and questionnaire data. The
strength of the questionnaire as a measurement tool was valuable to
us to help examine player engagement without the use of intrusive
physiological measures such as Galvanic Skin Response (GSR).

3 IMPLEMENTATION
3.1 Gidget
The original Gidget game1 is a game intended to help students
learn debugging with the help of a personified robot named Gidget.
Gidget tells the story of a factory malfunction that has resulted
in toxic ‘goop’ being released and threatening pets and other ani-
mals. The player is given control over Gidget’s programming, and
must write programs in an imperative language that help Gidget
to complete the goals in a given level. However, Gidget only has a
limited amount of energy, and if the player’s program is not able to
complete the level goals before Gidget runs out of energy, Gidget
will fail and the player will have to try again.

The game includes a total of 18 levels, the first half of which
are tutorials for the various commands needed to make Gidget
complete the level’s goals. This includes the following commands:

• scan - the command used for Gidget to load an object into
memory in order to interact with it using other commands.
Scanning an object costs 1 energy unit.

• goto - the command used for Gidget to move to a scanned
object. Each step Gidget takes costs 1 energy unit.

• grab - the command used for Gidget to pick up an object
in the current space. Grabbing an object costs 1 energy. In
addition, Gidget’s movement using goto commands costs an
additional energy unit for each object carried. This means
players must be careful to choose effective routes through

1The source code for the original Gidget game is available at
https://github.com/amyjko/Gidget and the latest version of Gidget can be played
online at http://www.helpgidget.org/.

GidgetML: An Adaptive Serious Game for Enhancing
First Year Programming Labs ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 1: The Gidget game (with annotations), where learners help a damaged robot fix its programs by debugging its code [10].

Training
Task(s)

Adapted
Task

Initialize
Player
Model

Player
Model
Update

Measure
Behavior

Insufficient Data

Figure 2: Adaptive gameplay sequence [13]

each level, and prevents them from simply picking up all the
objects in the level and putting them together.

• drop - the command used for Gidget to drop an object in the
current space. Many levels require Gidget to transport goop
or animals into buckets or crates.

• analyze - the command used for Gidget to determine the
functions and properties of an object in the current space.
Some levels require Gidget to only interact with objects that
share a certain trait. Other levels require Gidget to activate
the functions of an object, but the name of those functions
is not known until the analyze command is used.

• ask - the command used for Gidget to call a function from
another object. For example, one of the early tutorial levels
requires Gidget to ‘ask battery to energize gidget’, where
energize is a function of the battery object. This command
cannot be used until the object being referenced has been
analyzed.

• avoid - a command that can only be combined with the
goto command. This allows Gidget to take a path to the

destination while attempting not to encounter a specific
object. For example, ‘goto bucket avoid crack’ makes Gidget
walk to the bucket object while taking a path that does not
include cracks in the ground.

In addition to these commands, Gidget includes conditional state-
ments using the ‘if’ keyword; for example, ‘goto goop, if it isn’t
glowing, grab it’. Although newer versions of Gidget include func-
tions, iteratives, and other introductory programming concepts, the
version that was accessible to us on Github was an older version
that did not have these features.

Players are introduced to each command in a tutorial level that
includes incorrect starter code. The learning in Gidget comes from
players executing the incorrect code, observing the behaviour, and
determining how to modify the code to create a correct solution.
Later levels of the game require a great deal of testing, especially
when some of the functions and properties of objects needed to
complete a level are not available until the analyze command has
been used in several instances. Players complete the game after the

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Michael A. Miljanovic and Jeremy S. Bradbury

Figure 3: K-means categorization. Each player is categorized
into one of three groups (high, medium, low) based on their
gameplay data.

Figure 4: K-means categorization during gameplay.
Among those in the same category as the current player, the plurality were originally

categorized as in the medium competence group, so the current player is also categorized

as medium.

18th level, when they manage to close the leak in the ‘goop’ factory
and rescue all of the animals in danger.

3.2 GidgetML
The first steps taken to create GidgetML2. were to model the player
as well as the levels in Gidget. In the process of completing a level,
a player will likely attempt multiple solutions at the puzzle, and
will likely fail repeatedly until coming upon a working solution.
Using this data, we chose to use the number of failures as well as
the energy (i.e. program steps) used in successful solutions as our
way to classify student competence. We chose not to consider time
as a factor due to a lack of incentives in the game for learners to
play at a quick pace.

In order to classify students, we chose a k-means clustering
approach based on the failures and energy expenditures of each
player on each level. We chose to limit the number of clusters to 3
in order to have a sufficient number of candidates in each cluster
during the training phase. The clusters were ranked based on their
normalized feature vectors, giving us a “low”, “medium”, and “high”
categorization for each player. We only used complete data sets
from our training data in the clustering algorithm, however there
2GidgetML is open-sourced and available on Github at
https://github.com/sqrlab/GidgetML

are ways that missing data can be handled [12]. During gameplay,
a k-means clustering is performed using the available data from the
current player in comparison to the previous players who have been
already categorized. The other players in the cluster containing the
current player are then examined for their previous categorization;
the current player is given the same categorization as the largest
group from their current cluster. An example of this can be seen in
Figures 3 and 4.

A level is comprised of an environment of game objects, a list of
goals to be completed, incorrect starter code to be modified, and an
initial energy limit that dictates how many commands can be taken
before Gidget fails to complete the level. Although all of these level
parameters could be altered automatically, we chose to focus on
changing energy limits and starter code, as these adaptations would
allow optimal solutions to be accepted regardless of adaptation
status. Alterations to the environment in particular would have
required a time-intensive amount of manual work, and we wanted
to avoid adapting features that might not be easily applicable to
other similar games. Overall, the total number of lines of code added
or removed to the project during the implementation was 1017 out
of the original 11800 total lines of code, meaning that less than 10%
of the code needed to be modified.

To match the number of clusters from our k-means approach, we
developed three variations on each level in the game after the first
three tutorial levels, which are used as a starting point of player
data. When a player is categorized as “low”, “medium”, or “high”,
the player’s next selected level is set to the variation that matches
their categorization; however, if a player’s categorization changes
from one extreme to the other (e.g. High to low, or low to high),
they are instead set to the “middle” categorization. The difference
between low and high adaptations can be observed in Figure 5.

4 METHODOLOGY
4.1 Adaptive Methodology
The adaptive methodology we devised [13] involves a four phase
process (see Figure 6):

(1) Identifying a serious programming game for adaptation
(2) Modelling and connecting tasks with in-game assessments
(3) Implementing adaptation into the existing code
(4) Evaluating the adaptive game in comparison to the original

version
In the identification phase, we selected from among those games

listed in the review by Vahldick [17] and our own review [14]. Since
our target audience were university students with no programming
experience, we only considered games that were appropriate for
that group. Many of the games listed in the reviews did not have
available source code, which further narrowed our search. Finally,
among the remaining games, Gidget was selected as the one that
had the most prior research and evidence supporting its efficacy as
a serious programming game.

During the modeling phase, we identified game tasks as having
the following features:

• Instructions (starter code)
• Goals (requirements for task completion)
• World (environment conditions)

GidgetML: An Adaptive Serious Game for Enhancing
First Year Programming Labs ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 5: Adaptivity in the Gidget game.
The starter code on the left side of the screen is presented to students who are categorized in the low competence group, while the code on the right is for those in the higher competence

group. A correct solution to this level is to change the line of code on the left from “ask chute to give you a goop" to “ask chute to getgoop".

1. Identify 2. Model 3. Build

Playability issues

4. Evaluate

Edit adaptive modelGame is not adaptable

Figure 6: An overview of a methodology for making adaptive serious games [13]
“Once a game has been identified for adaptation, a model and plan is developed that connects the game play tasks with a method for assessing learners. After the model has been created,

the adaptation functionality is built into the existing code base. Finally, the new adaptive serious game should be evaluated to determine its efficacy (e.g., learning, engagement) and the

evaluation results should be compared with the efficacy results of the original non-adaptive serious game." [13]

• Energy Units (number of steps permissible before failure)
• Order (levels were numbered 1 to 18)

In their survey, we [14] noted that debugging is the primary
concept covered in Gidget. In order to facilitate the activity of de-
bugging, we chose starter code as one of the features that would be
adapted during game play. Energy units were also chosen as a way
to adapt the game, as this adaptation would allow low competence
players additional flexibility in their solutions while restricting the
solution set for high competence players.

For player behaviour, we identified failed attempts, energy used
in solutions, and time elapsed as potential options for data analysis.
However, since players were not incentivized to play the game as
quickly as possible, we chose to only examine failures and energy
usage for adaptation. We chose to weigh these features equally in
terms of assessing player competence.

For implementing the adaptation, we created three versions of
each level associated with low, medium, or high competency. We
determined the amount of energy required to complete each level
with an optimal solution, and reduced the energy limitations for
less competent groups. The starter code for the lowest competency

group was set to be within 1-2 statements away from a valid solu-
tion, while the highest competency group would receive code that
often required each line to be modified at least once.

Our evaluation of GidgetML to compare it with the original
version is outlined in the following section.

4.2 Experimental Design
With permission from the course instructor, we designed a study
for using Gidget and GidgetML in a first year programming course,
before students began to complete any of their lab assignments.
Course labs took place on multiple days of the week, so we chose
to divide the class by having the three labs on the first day (54
students) complete the original non-adaptive version of Gidget, and
the remaining labs (93 students) complete GidgetML.

After each lab completed their play sessions, the categorizations
of past player data were updated using k-means clustering. This
means that players from the final lab had their data compared
to players from all previous labs, including those in the adaptive
sessions. During these updates, each of the three categories were
ranked based on their normalized failure rates and energy amounts
used per level.

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Michael A. Miljanovic and Jeremy S. Bradbury

After completing the game, players were directed to a question-
naire with the same questions from Lee &Ko’s study on engagement
in Gidget [10]. Participants were asked for their age, gender, and
how much past experience they had with programming. We added
the GEQ [2] to this questionnaire to see if we would find any signifi-
cant affective differences between the Gidget and GidgetML groups.
The questionnaire included the following questions which students
answered with a Likert Scale (Strongly Disagree to Strongly Agree):

• “I enjoyed playing the game”
• “I would recommend this game to a friend wanting to learn
programming”

• “I wanted to help Gidget succeed”
The questionnaire also included the following open-ended ques-

tions, which were coded as 1 (positive), 0 (neutral), or -1 (negative):
• “ Describe your feelings about the dialogue between yourself
and Gidget.”

• “Describe your feelings towards Gidget’s avatar (image).”
• “How was this learning experience different, if at all, from
any previous experience you have had dealing with program-
ming?”

A student’s t-test was used to examine significance between the
Gidget group and GidgetML group on each feature of our data.

5 RESULTS
Out of 147 students registered in a first year class, 100 took part in
the study. The group of participants from the first day of laboratories
was labelled the Gidget group, totalling 32 students, and those from
the remaining labs were labelled the GidgetML group, totalling 68
students. The average age of participants was 18.49. 81 students
identified as male and 12 identified as female; details on the genders
(e.g. transgendered) of the remaining 7 students have been kept
hidden to protect anonymity.

77 students had taken a computer science course before (84% of
Gidget, 74% of GidgetML), 16 students had experience making a
website from scratch (19% of Gidget, 15% of GidgetML), 70 had writ-
ten a computer program before (75% of Gidget, 78% of GidgetML),
and 10 students had written or contributed to developing software
(13% of Gidget, 9% of GidgetML).

We did a keyword search through participant’s responses to our
questionnaires, searching for the words ‘hard’, ‘difficult’, ‘challenge’,
and ‘frustrate’, and found the following results:

Quotes from Gidget Group:
• “Really great and difficulty as levels progressed was challeng-
ing."

• “The challenge of the game kept me interested in it but not
being compensated for my efforts left me unwilling to continue
further."

• “There was no clear dialogue on how to obtain the battery to
complete the level."

• “The game was getting difficult to understand in what I had to
accomplish and what commands I had to use in order to finish
certain steps which was frustrating."

• “Frustration and not knowing why the code wasn’t working.
Maybe after a few tries a hint could be provided."

• “Either the level was too hard or there was too much dialogue."

Figure 7: Perceptions of Gidget

• “Difficult to understand at first made sense after a few tries."
• “I got frustrated."
• “It seemed frustrating sometimes because I had difficulty com-
prehending what Gidget was trying to say."

• “Got too hard!!"
• “It felt like manual debugging and I definitely felt the same
kind of frustration as when a program doesn’t work."

• “Despite the frustration I enjoyed playing the game with my
friends, we got some laughs out of it."

Quotes from Adaptive Group:

• “...increasing difficulty throughout the levels of the game."
• “I ran out of time and there was a sharp difficulty spike on
level 18."

• “It was more difficult [than real programming] because I found
the commands confusing."

• “I like the challenges. They’re small and cute so I would love to
play more."

• “Gidget was very friendly and I felt bad when I could not
complete particular levels."

• “The game became challenging and I felt like I was confused
on what the level was asking me."

• “...it was frustrating at times but it was still a good experience."

Results from student perceptions of Gidget are shown in Fig-
ure 7. Students’ expressed enjoyment of Gidget was relatively neu-
tral (mean=0.063, std=1.044), but students in the GidgetML group
(mean=0.154, std=1.034) enjoyed the game more than those in
the Gidget group (mean=-0.133, std=1.074). This result was not
significant (t=-1.242, p=.109). Students overall would recommend
the Gidget game (mean=0.147, std=1.076), regardless of whether
they were in the GidgetML (mean=0.141, std=1.067) or Gidget
group (mean=0.161, std=1.128). This result was not significant
(t=0.087, p=.465). Students generally wanted Gidget to succeed
(mean=0.681, std=1.013), although this effect was stronger in the
GidgetML Group (mean=0.794, std=0.986) than the Gidget group
(mean=0.452, std=1.060). This result was almost significant (t=-1.542,
p=.063).

Results from coded student perceptions of Gidget are shown in
Figure 8. Responses were coded as 1 for positive responses, 0 for

GidgetML: An Adaptive Serious Game for Enhancing
First Year Programming Labs ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 8: Coded perceptions of Gidget

Figure 9: Variance of Energy used in Solutions

neutral responses, and -1 for negative responses. Students over-
all had a neutral impression of Gidget’s dialogue (mean=-0.0294,
std=0.840), with students in the Gidget group having a slightly more
negative opinion (mean=-0.143, std=0.756) towards it than those
in the GidgetML group (mean=0.050, std=0.904). The difference
between groups was not significant (t=-0.924, p=.179). There was
generally a positive opinion of Gidget’s avatar, regardless of group
(mean=0.500, std=0.738). The difference between groups was not
significant (t=-0.164, p=.435).When comparing the game to real cod-
ing activities, the game was overall viewed neutrally (mean=-0.045,
std=0.824), but those in the Gidget group (mean=0.185, std=0.879)
significantly (t=1.915, p=.030) preferred the game over past ex-
periences with programming than those in the GidgetML group
(mean=-0.205, std=0.767) .

Student data on the variance of how much energy (steps) was
needed to complete levels is shown in Figures 9 and 10. Figure 9
shows how each lab differs on the variance of energy used in their
program solutions. The Gidget group, from labs 1-3, had a sig-
nificantly higher average variance (mean=101.382, std=103.124)

Figure 10: Grouped Variance of Energy used in Solutions

Figure 11: Variance of failures per level

Figure 12: Grouped variance of failures per level

than the GidgetML group of labs 4-6 (mean=32.777, std=34.579).
Figure 10 illustrates the difference between the two groups. The dif-
ference between groups was highly statistically significant (t=3.842,
p=.000108).

Student data on the variance of number of failures per level is
shown in Figures 11 and 12. Figure 11 shows how each lab differs
on the variance of energy used in their program solutions. The

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Michael A. Miljanovic and Jeremy S. Bradbury

Figure 13: Responses to Gaming Experience Questionnaire (GEQ) [2]

Gidget group, from labs 1-3, had a significantly higher average
variance (mean=1411.171, std=827.187) than the GidgetML group
(mean=765.557, std=763.000) of labs 4-6. Figure 12 illustrates the
difference between the two groups. The difference between groups
was extremely statistically significant (t=4.949, p<.00001).

Figure 13 shows the responses of students to the GEQ. On av-
erage, students scored low on all of the GEQ items. Interestingly,
this means students felt neither a significantly negative or positive
experience. There was no significant difference found between the
two groups.

6 DISCUSSION
Our first research question was “Does Gidget benefit from adapta-
tion?" To answer this question, we looked for evidence that would
inform us about the need for Gidget to be adaptive. Although we
had the option of having students self-report whether Gidget was
appropriate for their competency level, we instead opted for an anal-
ysis of the logged data available from game play. In Figures 9 and 11,
we show how the Gidget group’s variance was both high in value
as well as highly varied between participants. This high variance
illustrates that the performance of students differed greatly from
level to level, suggesting that Gidget could benefit from adaptation.

Our second research question was “Is GidgetML effective at
adapting to a learner’s level of competency?" Using our methodol-
ogy from previous work [13], we sought to answer this question
by determining if an adaptive version of Gidget could reduce the
variance in participant failure rates and energy usage. A reduced
variance would indicate that the difficulty of the game was more
consistent with respect to the competence of the participant. From
Figures 10 and 12, the change observed in variance between the
Gidget and GidgetML groups suggests that our adaptation had a

significant effect on students, and the different coded responses
support the idea that the Gidget group had more negative experi-
ence with the game than the GidgetML group. Although we did
not see significant differences on answers from the GEQ, this may
simply be due to players not having strong emotional feelings about
the game one way or another. In Figures 9 and 11, we can also see
that the variance of the GidgetML group seemed to decrease over
time, as we had access to more data for use in adaptation. This is a
promising observation that with additional data, GidgetML could
be even better at adapting to learner competences.

7 THREATS TO VALIDITY
We encountered several challenges while conducting this study.
First, the length of the original Gidget game was a large hurdle
for many students in the classroom environment, as many were
not able to complete all of the game’s levels. Second, the k-means
clustering algorithm used in GidgetML was a challenge, especially
when extreme outliers were introduced into the data set, which
caused issues for low amounts of student data. Third, our work
could have benefited by gathering a larger, more varied population
of participants from different schools and countries rather than a
population in a single class at a single university. Although most
students reported similar backgrounds in computer programming,
there were most likely differences in specific content that they
learned from their prior education at different high schools.

We chose to adapt Gidget because it was a third-party developed
game. This was a deliberate choice as adapting a game that we
created ourselves would potentially introduce bias into our research.
However, a side effect of this choice was that some of the feedback
from participants was related to issues that arose from the original
game independently of our adaptive implementation. Furthermore,

GidgetML: An Adaptive Serious Game for Enhancing
First Year Programming Labs ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

while Gidget is similar to other existing serious programming games
in its delivery of tasks and imperative coding style, there are many
other games that have a significantly different style of gameplay
that would require alternative adaptive strategies.

Althoughwe followed our general adaptive methodology for seri-
ous programming games [13], some of our implementation choices
were specific to Gidget; in particular, the starter code and concept of
energy units were unique to the game and would not be present in
other serious games. However, the principles of modifying starter
code or putting restrictions on the number of permitted steps in
a solution are generalizable to other serious programming games.
Any game that requires players to program a sequence of steps to
solve a puzzle can have these elements, and thus might be adapted
by a similar implementation to the one we used for GidgetML.

8 CONCLUSION & FUTUREWORK
In our study, we found that Gidget had the potential to benefit from
adaptation, as observed through the high levels of variance among
learners who played the game. GidgetML, our adaptive version
of Gidget, significantly decreased the observed variance, without
extensively changing the content in the original game. In the short-
term, our upcoming research will investigate correlations between
the use of adaptation and student grades. Although grades on lab
scores do not necessarily indicate learning, it would be useful to
know if there are correlations between student academic evalu-
ations and the adaptive assessments, especially in a longitudinal
approach. We also hope to conduct another study with a more bal-
anced population, to determine if there are differences in adaptation
benefits when considering demographics such as gender.

In the future, it would also be interesting to explore variation
on GidgetML by looking at the use of different adaptable game fea-
tures such as time and different adaptation strategies (i.e. machine
learning algorithms). In particular, it would be valuable to explore
adaptation strategies that can learn from incomplete data sets of
student gameplay. Another avenue of future work is to explore
GidgetML in different contexts including outside the classroom and
in scenarios where students replay the game. Finally, we plan to
continue exploring the benefits of our adaptive methodology with
other games that help students learn programming.

ACKNOWLEDGMENTS
We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), [funding reference
number 2018-06588].

Special thanks to Amy Ko and Michael Lee for their work on the
original non-adaptive version of Gidget.

REFERENCES
[1] Francesco Bellotti, Riccardo Berta, Alessandro De Gloria, and Ludovica Primavera.

2009. Adaptive experience engine for serious games. IEEE Transactions on
Computational Intelligence and AI in Games 1, 4 (2009), 264–280.

[2] Jeanne H Brockmyer, Christine M Fox, Kathleen A Curtiss, Evan McBroom,
Kimberly M Burkhart, and Jacquelyn N Pidruzny. 2009. The development of
the Game Engagement Questionnaire: A measure of engagement in video game-
playing. Journal of Experimental Social Psychology 45, 4 (2009), 624–634.

[3] Mihaly Csikszentmihalyi. 1997. Finding flow: The psychology of engagement with
everyday life. Basic Books.

[4] Stefan Göbel, Florian Mehm, Sabrina Radke, and Ralf Steinmetz. 2009. 80days:
Adaptive digital storytelling for digital educational games. In Proceedings of the

Second International Workshop on Story-Telling and Educational Games (STEG’09),
Vol. 498.

[5] Andrew Gonczi. 1999. Competency-based learning. Understanding learning at
work (1999), 180–195.

[6] Maurice Hendrix, Tyrone Bellamy-Wood, Sam McKay, Victoria Bloom, and Ian
Dunwell. 2018. Implementing adaptive game difficulty balancing in serious games.
IEEE Transactions on Games (2018).

[7] Michael D Kickmeier-Rust and Dietrich Albert. 2010. Micro-adaptivity: Protecting
immersion in didactically adaptive digital educational games. Journal of Computer
Assisted Learning 26, 2 (2010), 95–105.

[8] Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters,
Amber Horvath, Fanny Luor, Jill Cao, Catherine Law, Michael Beswetherick, et al.
2014. Principles of a debugging-first puzzle game for computing education. In
Proceedings of the 2014 IEEE symposium on visual languages and human-centric
computing (VL/HCC). IEEE, 57–64.

[9] Michael J Lee and Amy J Ko. 2011. Personifying programming tool feedback im-
proves novice programmers’ learning. In Proceedings of the Seventh International
Workshop on Computing Education Research. ACM, 109–116.

[10] Michael J Lee and Amy J Ko. 2012. Investigating the role of purposeful goals on
novices’ engagement in a programming game. In Proceedings of the 2012 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
163–166.

[11] Michael J. Lee, Amy J. Ko, and Irwin Kwan. 2013. In-game assessments increase
novice programmers’ engagement and level completion speed. In Proceedings
of the Ninth Annual International ACM Conference on International Computing
Education Research (ICER ’13). ACM, New York, NY, USA, 153–160. https://doi.
org/10.1145/2493394.2493410

[12] Dan Li, Jitender Deogun, William Spaulding, and Bill Shuart. 2004. Towards miss-
ing data imputation: a study of fuzzy k-means clustering method. In Proceedings
of the International Conference on Rough Sets and Current Trends in Computing.
Springer, 573–579.

[13] Michael AMiljanovic and Jeremy S Bradbury. 2018. Making Serious Programming
Games Adaptive. In Proceedings of the Joint International Conference on Serious
Games. Springer, 253–259.

[14] Michael A Miljanovic and Jeremy S Bradbury. 2018. A review of serious games
for programming. In Proceedings of the Joint International Conference on Serious
Games. Springer, 204–216.

[15] Georg Rasch. 1960. Studies in mathematical psychology: I. Probabilistic models
for some intelligence and attainment tests. (1960).

[16] Valerie Shute, Fengfeng Ke, and Lubin Wang. 2017. Assessment and adaptation in
games. In Instructional techniques to facilitate learning and motivation of serious
games. Springer, 59–78.

[17] Adilson Vahldick, António José Mendes, and Maria José Marcelino. 2014. A
review of games designed to improve introductory computer programming
competencies. In 2014 IEEE Frontiers in Education Conference (FIE) proceedings.
IEEE.

[18] D Zhao, AE Chis, GM Muntean, and CH Muntean. 2018. A large-scale pilot study
on game-based learning and blended learning methodologies in undergraduate
programming courses. In Proceedings of the EDULEARN Conference, Palma de
Mallorca, Spain.

https://doi.org/10.1145/2493394.2493410
https://doi.org/10.1145/2493394.2493410

	Abstract
	1 Introduction
	2 Background
	3 Implementation
	3.1 Gidget
	3.2 GidgetML

	4 Methodology
	4.1 Adaptive Methodology
	4.2 Experimental Design

	5 Results
	6 Discussion
	7 Threats to Validity
	8 Conclusion & Future Work
	Acknowledgments
	References

