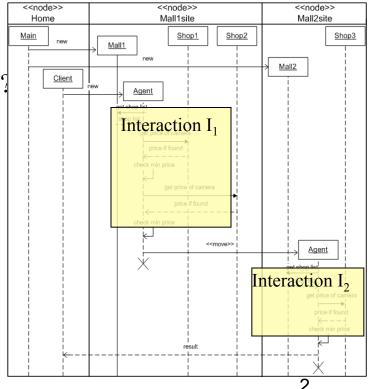
Implementing and Evaluating a Runtime Conformance Checker for Mobile Agent Systems

Ahmad Saifan, Juergen Dingel, Jeremy Bradbury, Ernesto Posse

Presented by: Ahmad Saifan

Tuesday, 5 June, 12

Faculty of Information Technology Yarmouk University Irbid, Jordan


Introduction

- Mobile Agent Systems (MASs) are special kind of distributed system (DS)
- In MAS, agent can move from one host to another

• Little existing work to support quality assurance techniques of MASs [Delamaro et al 03, Winikoff 08]

• The problem

- Correctness of agent movement and interaction?
- Oo interactions yield expected results?
- ° Constraints on: e.g.,
 - types of messages and data exchanged
 - order of messages
 - hosts visited
 - response times

Related Work

- **Model-based testing** [e.g., Utting 06, Brinksma et al 04]
 - 1. Build model
 - 2. Generate test cases
 - 3. Execute test cases
 - 4. Check conformance

Runtime monitoring

- Ouse run-time monitoring to check observed executions w.r.t. specification (e.g., Java-MaC [Kim et al 04], Java PathExplorer [Havelund et al 04])
- Application domain (e.g., real-time systems, DS, sequential and concurrent systems, MAS)

Testing mobile code and agent systems

° E.g., JaBUTi/MA [Delamaro et al 03]

Our approach

- Assume high-level, executable specification (Kiltera)
- Observed executions w.r.t. specification

Outline of Talk

- 1. Kiltera
- 2. Runtime conformance checking approach
- 3. Implementation and experimentation
 - Online shopping
- 4. Evaluation
 - Mobile agent mutation operators (IBM Aglets)
 - Mutation-based evaluation framework
 - ° Experiment & results
- 5. Conclusion

Kiltera

Kiltera: A language for concurrent, mobile, real-time, distributed computation, based on the pi-calculus. A kiltera system consists of concurrent processes which interact via message passing [Posse 08].

Distribution:

- ° Processes execute in *sites*
- Behavior can be site-dependent

• Mobility:

- ° Channel mobility: changing network topology
- Process mobility: migrating to other sites

• Real-time:

- ° Constructs to, e.g., measure wait-time, timeouts
- ° Behavior can be timing-dependent
- ⇒ kiltera models are executable and analyzable

Our Approach: Overview

```
IUT
                                                                                                KM
                                             Requirements
public class Agent ⋅⋅⋅ {
                                                        build
                                                                                   module Agent[...] ...
   dispatch(dest);
                                         HLM
                                                                      translate
                                                                                    move Agent[\cdots](\cdots) to dest
 public void onArrival(…){
                                                                                         identify check points
                   identify check points
                                                                                         instrument
                   instrument
  public class Agent ... {
                                                                         when msg with data ->
                                                                            if data != " Agent moved…" then
         dispatch(dest);
                                                                               error("non-conformance");
                                                                            else
    public void onArrival(…){
                                                                              move Agent[\cdots](\cdots) to dest
      Socket s = \text{new Socket}(\cdots);
      PrintStream str = new ...;
      str.println(" Agent moved...")
                                         run
                                                                      run
                                                                                                            6
```

Implementation and Experimentation

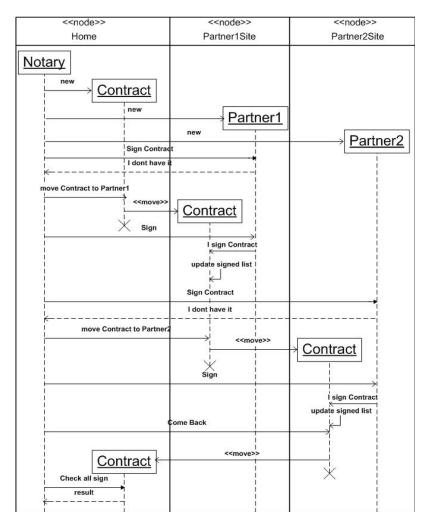
Operational prototype

- Use Java Aglets [IBM Tokyo Lab] for IUT
- ° Use UML Agent profile for HLM [Kusek and Jezic 06]
- ° Use Python connector to connect IUT with KM

• Case studies:

- Online shopping
- ° Contract signing
- ° Token ring algorithm
- ° Lamport's distributed mutex algorithm

Signing Contract


Sample properties:

- ° "Agent moved to correct site"
- ° "At the end all partners have signed the contract"

Observation:

- Able to detect seeded faults
- KM is considerably smaller than
 IUT

File Name	IUT	KM	
Notary	87	30	
Contract	132	28	
Partner1	71	16	
Partner2	71	16	

Evaluation

- Designed and implemented mutation-based evaluation framework
 - ° Two phases:
 - 1. Mutant generation phase
 - 2. Execution phase
- Mutation Testing
 - A mutant is a slightly changed version of original program that arises through application of a mutation operator
 - ° Developed 29 mutation operators for Aglets in 6 different categories:
 - 1. Mobility
 - 2. Communication
 - 3. Run method
 - 4. Agent creation
 - 5. Event listeners
 - 6. Agent proxy

Mobile Agent Mutation Operators (Aglets)

Operator	Mutation Operator		
Category	- Fernis		
	CDD: Change Dispatch Destination		
	IDS: Insert Deactivate Statement		
	RAPD: Remove Aglet Proxy from Dispatch		
Mobility	statement		
Mobility	RDS: Remove Dispatch Statement		
	RDD: Replace Dispatch with Dispose		
	RDR: Replace Dispatch to Retract		
	SICD: Shrink ifelse Containing Dispatch		
	SDS: Switch Dispatch Statement		
	CMP: Change Message Parameter		
	CMOW: Change Message to One Way mes-		
	sage		
	RSMM: Remove Send Message Method		
Communication	MSKP: Modify SameKind Parameter		
	MSR: Modify SendReply Parameter		
	RPSM: Remove a Parameter from a Set of		
	Methods		
	RSRM: Remove SendReply Method		
	MCMC: Move the Communication Method		
	Calls in ifElse		
	NAN: Notify All message to Notify message		
Agent's Run	RMRM: ReMove Run Method		
Method	RPRM: RePlace Run Method		
	MICA: Modify Create Aglet Parameter		
Agent Creation	MFCA: Modify the File name in Create Aglet		
	ROCM: Replace onCreation with other		
	Method		
	ACON: Add clone method in onCreation		
Event Listeners	RCBMN: Replace CallBack Method Name		
	RARL: Replace Add listener with Remove Lis-		
	tener		
	RAID: Remove AgletProxy from getAgletID		
Agent Proxy	CPCN: Change Proxy name in getAgletClass-		
	Name		
	CSAP: Change the State in getAgletProxies		
	CNP: Change Number of Proxies		

Mobile Agent Mutation Operators

(Aglets)

RDS: Remove Dispatch Statement:

Original Code	Apply RDS Operator		
<pre>try{ Contract.dispatch(dest); } catch</pre>	<pre>try{ /*removed dispatch*/ } catch</pre>		

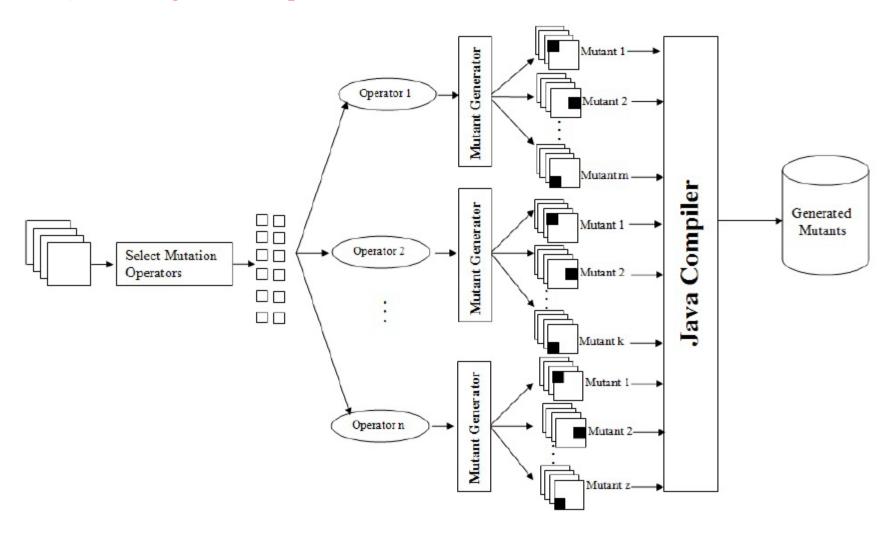
Operator	Mutation Operator		
Category	_		
	CDD: Change Dispatch Destination		
	IDS: Insert Deactivate Statement		
	RAPD: Remove Aglet Proxy from Dispatch		
Mobility	statement		
Widdinty	RDS: Remove Dispatch Statement		
	RDD: Replace Dispatch with Dispose		
	RDR: Replace Dispatch to Retract		
	SICD: Shrink ifelse Containing Dispatch		
	SDS: Switch Dispatch Statement		
	CMP: Change Message Parameter		
	CMOW: Change Message to One Way mes-		
	sage		
	RSMM: Remove Send Message Method		
Communication	MSKP: Modify SameKind Parameter		
	MSR: Modify SendReply Parameter		
	RPSM: Remove a Parameter from a Set of		
	Methods		
	RSRM: Remove SendReply Method		
	MCMC: Move the Communication Method		
	Calls in ifElse		
	NAN: Notify All message to Notify message		
Agent's Run	RMRM: ReMove Run Method		
Method	RPRM: RePlace Run Method		
	MICA: Modify Create Aglet Parameter		
Agent Creation	MFCA: Modify the File name in Create Aglet		
rigent creation	ROCM: Replace onCreation with other		
	Method		
	ACON: Add clone method in onCreation		
Event Listeners	RCBMN: Replace CallBack Method Name		
Event Eisteners	RARL: Replace Add listener with Remove Lis-		
	tener		
	RAID: Remove AgletProxy from getAgletID		
Agent Proxy	CPCN: Change Proxy name in getAgletClass-		
Agent Floxy	Name		
l	CSAP: Change the State in getAgletProxies		
	CNP: Change Number of Proxies		
	1		

CSAP: Change the State in getAgletProxies

```
Original Code

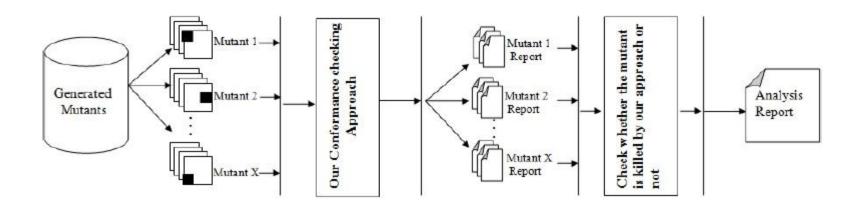
public Enumeration e;

e=A gletContext(). getAgletProxies(ACTIVE);


public Enumeration e;

e=A gletContext(). getAgletProxies(ACTIVE);

e=A gletContext(). getAgletProxies(INACTIVE);
```


Automatic Mutation-Based Evaluation Framework

• 1) Mutant generation phase

Automatic Mutation-Based Evaluation Framework (Cont' d)

• 2) Execution phase

Experiment

• Examples used

Aglets Program	loc
OnlineSearching	1157
Main.java	30
Client.java	61
Agent.java	212
Mall1 with 3 shops	186
Mall2 with 2 shops	131
Mall3 with 4 shops	241
Mall4 with 5 shops	296
SigningContract	549
Notary.java	121
Contract.java	144
Partner1.java	71
Partner2.java	71
Partner3.java	71
Partner4.java	71

- Mutation operators used
 - ° All mutation operators are applied

Results

Number of equivalent and killed mutants

- All 587 mutants evaluated in less than 15 hours
- Maximal execution time for each mutant: 1.5 minutes
- Single user, single processor machine (Pentium 4 3.06GHZ) with 3GB of memory running the Redhat Linux operating system

Γ	Operator	Mutant Generated	Equivalent	Non-Equivalent	killed	Killed Rate
t	RDR	15	0 (0%)	15	15	(100%)
	CDD	15	0 (0%)	15	15	(100%)
	IDS	15	0 (0%)	15	15	(100%)
	RAND	13	0 (0%)	13	13	(100%)
	RDS	15	0 (0%)	15	15	(100%)
	RDD	7	0 (0%)	7	7	(100%)
3	SIHD	2	0 (0%)	2	2	(100%)
	SDS	7	0 (0%)	7	7	(100%)
Γ	CMP	11	0 (0%)	11	11	(100%)
	CMOW	8	0 (0%)	8	8	(100%)
	RSMM	11	0 (0%)	11	11	(100%)
	RPSM	50	11 (22%)	39	33	(84.62%)
	MSKP	27	0 (0%)	27	27	(100%)
	MSR	41	13 (31.71%)	38	38	(100%)
	RSRM	44	13 (29.55%)	31	31	(100%)
	MCMC	46	0 (0%)	46	46	(100%)
	NAN	0	0	(-)	0	(-)
Γ	RMRM	2	0 (0%)	2	2	(100%)
	RPRM	18	0 (0%)	18	18	(100%)
Γ	MICA	2	0 (0%)	2	2	(100%)
	MFCA	25	0 (0%)	25	25	(100%)
	ROCM	87	0 (0%)	87	87	(100%)
	ACON	11	6 (54.55%)	5	5	(100%)
Γ	REN	80	0 (0%)	80	80	(100%)
	RARL	10	0 (0%)	10	10	(100%)
T	RAID	8	3 (37.50%)	5	5	(100%)
	CPCN	9	0 (0%)	9	9	(100%)
	CNP	5	0 (0%)	5	5	(100%)
	CSAP	3	0 (0%)	3	3	(100%)
Ĩ	Total	587	46 (7.84%)	541	535	(98.89%)

Conclusion

- New approach for checking conformance of mobile, distributed applications with respect to an executable model at runtime
 - ° Empirically validated approach using four case studies
 - ° Allowed us to find seeded faults in all implementations
 - Support for distributed monitoring
 - KM can be analyzed
 - Approach language independent
 - Should scale to much larger systems
- Designed and implemented a mutation-based evaluation framework
 - ° New mutation operators for mobile agent systems (Aglets)
 - ° Our approach is very effective in killing the non-equivalent mutants with respect to the programs used
 - ° Most of the mutation operators did not generate any equivalent mutants

Implementing and Evaluating a Runtime Conformance Checker for Mobile Agent Systems

Ahmad Saifan, Juergen Dingel, Jeremy Bradbury, Ernesto Posse

Presented by: Ahmad Saifan

Tuesday, 5 June, 12

Faculty of Information Technology Yarmouk University Irbid, Jordan