Using Mutation for the Assessment and Optimization of
Tests and Properties’

Jeremy S. Bradbury
School of Computing, Queen’s University
Kingston, Ontario, Canada

bradbury@cs.queensu.ca

ABSTRACT

We are interested in exploring the complementary relation-
ship and tradeoffs between testing and property-based anal-
ysis with respect to bug detection. In this paper we present

an empirical approach to the assessment of testing and property-

based analysis tools using metrics to measure the quantity
and efficiency of each technique at finding bugs. We have
implemented our approach in an assessment component that
has been constructed to allow for symmetrical comparison
and evaluation of tests versus properties. In addition to
assessing test cases and properties we are also interested
in using each to optimize the other as well as to develop
hybrid quality assurance approaches. We hypothesize that
the synergies of using testing and property-based analysis in
combination will allow for optimizations in test suites and
property sets that are not possible by using both approaches
in isolation.

Keywords

testing, formal analysis, test suite assessment, property as-
sessment, empirical software engineering.

1. INTRODUCTION

The goal of the proposed research work is to increase the
quality assurance of software systems by exploiting the syn-
ergies that exist between testing and property-based analy-
sis. Our interest in exploring the complementary relation-
ship between testing and property-based analysis is moti-
vated on the one hand by advances in the theory and prac-
tise of property-based analysis, especially formal analysis,
and on the other hand, by a need for improved quality assur-
ance techniques for industrial code — especially concurrent
code. We believe that the property-based formal analysis
tools that are now available offer the potential to substan-
tially aid in the debugging of industrial concurrent code.

*This work was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Intuitively, the detection of a property or assertion viola-
tion, such as a violation of a method pre-condition, a loop
invariant, a class representation invariant, an interface us-
age rule, or a temporal property should be more insightful
than the failure of a possibly global test case.

A shift in the focus of formal methods from proofs of cor-
rectness to debugging and testing has been advocated by
a number of researchers including Rushby [20]. In recent
years, tool development in the formal analysis community
has matured and the current generation of tools are auto-
matic, scalable, and only leave a small semantic gap between
the source artifacts used by developers and the model arti-
facts required for analysis. The ability to directly analyze
source code and the increase in size of systems that can be
analyzed has helped formal analysis become a viable option
for software debugging.

While the majority of software systems currently devel-
oped in industry are single-threaded sequential programs,
there is mounting evidence that “applications will increas-
ingly need to be concurrent if they want to fully exploit CPU
throughput gains that have now started becoming avail-
able and will continue to materialize over the next several
years” [21]. The shift from sequential to concurrent systems
provides an opportunity for the application of formal analy-
sis techniques which can often succeed at debugging concur-
rent systems while testing in this setting is often insufficient
or impractical.

2. HYPOTHESIS

Using a mutation-based approach to testing and
property-based analysis will allow for the assess-
ment and comparison of test suites and property
sets. Furthermore, the synergies of using testing
and formal analysis in combination will allow for
optimizations in test suites and property sets that
are not possible by using both approaches in isola-
tion. These optimizations can be integrated effi-
ciently into a modern software quality assurance
process and can help to increase the effectiveness
and efficiency of software quality assurance pro-
cesses.

The term assessment in our hypothesis refers to the statis-
tical evaluation of a test suite or property set using mutation
testing metrics. Mutation testing uses mutation operators
to generate faulty versions of the original program called mu-
tants. If we assume the original program as being correct
then a mutant version that is non-equivalent can be thought

of as having a bug. The percentage of non-equivalent mu-
tants detected (killed) by a test suite or property set is the
mutant score. We have chosen to use a mutation metric
because a recent study found that for the programs being
studied, mutant faults were a good measure of real faults [2].

The term optimization refers to two activities: generation
and reduction. On the one hand, test cases and properties
are generated to allow a given test suite or property set
to achieve a better evaluation using the mutation testing
metric. On the other hand, test suites and property sets are
reduced when the removal of test cases and property sets
will not reduce the evaluation result using the metric.

3. RESEARCH APPROACH

Our research approach consists of two phases. The first
phase is the assessment phase where we empirically evalu-
ate and explore the synergies between testing and property-
based analysis. The second phase is the optimization phase
where we take the results from out empirical assessment and
try to use it to enhance the quality assurance of a given pro-
gram by improving the test suite and property set as well
as develop hybrid techniques. Figure 1 shows our proposed
framework to support our research approach. The current
state of the framework is that the assessment component has
been completed but the optimization components have not.
We will now outline the assessment phase and the optimiza-
tion phase in more detail. Due to space we will not discuss
our experimental setup which was presented in a previous
paper [4].

3.1 Assessment Phase

To support the experimental procedure we have devel-
oped the assessment component of our framework such that
it features a high-degree of automation and customizabil-
ity and thus allows for a large number of experiments to be
carried out as efficiently as possible. Our assessment com-
ponent essentially consists of a Java application that acts as
a wrapper to all of the other tools and scripts used. The
framework is generic enough to allow for the comparison of
multiple testing and property-based analysis approaches.

For simplicity we will only explain the assessment frame-

—» Original o E—
o | T e
|
Assessmem

/ / TXL Mutant Generators Yomponent
Property-

| p| Testing |<—| Mutant —»| Based |€¢—
Source Code Analysis

v v

(Collection and Display of Results)

N . /
— ;

Property Set | A t Result i Test Suite
L Optimization | <4— SSESS'";E ESUS |y ! Optimization |«
Component atabase | Component
,,,,,,,,,,,,,, . R S

Figure 1: Proposed Assessment and Optimization
Framework

Assessment Results Reported by the Framework

e Mutant score for each test case/test suite

e Execution cost for each test case/test suite

* Number of test cases that kill each mutant

e Mutant score for each property/property set

o Execution cost for each property/property set

o Number of properties that kill each mutant

e Mutant score for each property pattern type

o Types of mutants killed by each property pattern type

Tests

Properties

o Hybrid set of tests and properties that achieve the
highest mutant score

o Hybrid set of tests and properties that achieve a certain
mutant score (e.g. 90%) and
o has the lowest execution cost
o has the smallest set of tests and properties

& properties

Integrating tests

Table 1: Types of results collected and reported

work in the context of comparing one testing technique (e.g.,
concurrent testing using a randomized scheduler with Con-
Test [8]) with one property-based analysis technique (e.g.,
static analysis approach using Path Inspector [1]) or for-
mal analysis approach using Bandera [6]/Bogor [19]). When
comparing testing with a property-based analysis the com-
ponent requires as input a program (e.g., written in C, C++,
Java) and an accompanying test suite and property set.
Once the inputs have been selected, the assessment com-
ponent implements four main steps in the experimental pro-
cedure:

1. Mutant generation: A built-in set of mutation opera-
tors can be selected individually to allow for the gen-
eration of mutant programs to be customized.

2. Property-based Analysis: Our application calls an au-
tomatically generated script which allows all of the
property-based analyses to be performed automatically.
For our set of properties we first evaluate each prop-
erty using the original program to determine the ex-
pected outputs. Next we evaluate our property set
for all of the mutant versions of the original program.
During property-based analysis all of the verification
results, generated counter-examples, and analysis ex-
ecution times of each property with each program are
recorded.

3. Testing: Our application calls an automatically gen-
erated script which compiles the source code and exe-
cutes the testing, recording the output result and exe-
cution time for each test case with each program.

4. Collection and display of results: We compare the ex-
ecution and analysis results of the original program
with the results of executing and analyzing the mu-
tant programs to see if each test case and property
was able to distinguish the mutant programs from the
original (see Table 1).

Currently, we have implemented all four steps of the ex-
perimental procedure in the assessment component and sam-
ple screenshots of the component are given in Figure 2. We
have made the component customizable and flexible to sup-
port a wide range of experiments using different programs,
languages, tools, and properties. For example, we plan to
compare different property-based analysis techniques and
compare different types of properties (e.g. assertions vs.
LTL properties). We will discuss the specific experiments
we are currently planning in Section 4.

B Mutation:based Assessment of Test suites and Property sets. Si-1E3
Lud L

File Project Options Help

B VIEw RESULTS.

Generate Approach Data

FPrint Tokens
1| |- ®Select Source

B Create Mutans
Select Approach:

[¥] Display Raw Data B Compile Saurce & Mutants

= = B Select Antifats

[A#1: Testing with gec M| ¢l Display Mutant Scores X0 et cased]
[¥| Display Ease to Kill Each Mutant IX3 LTL Froperties

_— o 9 B Run Analysis

[Generate Report [7] Display Average Time Per Artifact Xl Testing (9co)

(% Mutation-based Assessment of Test Suites and Property S X static Analysis (Path Inspector)
File Project Options Help B View Results
4 =T

Generate Hyrbrid Data

Test Cases Pool Directory: [Experiments/print_tokens/testing]
Test Cases Set Directory: [Experiments/print_tokens testing/

bug6.123.1
bug6.123.10
bug6.123.11
bug6.123.12
bug6.123.13
~—> using input: bug|| [bug6.123.14
-=> using input: bug|| [bug6.123.15
Eill --> using input: bug|| [bug6.123.16
--» using input: bug|| [puge.123.07
--> uging Input: bug|
--> using input: bug|

¥/ Record Te| L-

TStsT

[¥] Limit Process Re: uslin1801

Test Cases(s)
s

Remuye uslin.1160
Test Casests) uslin1466.1ongtoken
£5= tst116 =
uslin1176
uslin808
test211
test254

Fip=e

bug6.123.18
bug6.123.19 =

PO Select
running test suite on muf(] v Random Set
> using input: bug|

-~ using nput. pu|| | Generate Test Cases pool | ﬁ

--> using input: bug|

--> using input: bug| Add New Test Cases

[l [T
=

[«

|

Save Test Cases Set

Figure 2: Assessment Component Screenshots

3.2 Optimization Phase

The optimization phase of our research is currently future
work and will not begin until we have collected all of the em-
pirical results from the assessment phase. The optimization
phase will consist of 4 steps and will be supported by the
development of two components; a test suite optimization
component and a property set optimization component:

1. Test case generation: If there exists a mutant that is
killed by a property and no test case exists to kill the
mutant then we plan to use a counter-example gener-
ated by the formal analysis to develop a test case that
will kill the mutants. Similar approaches to the test
case generation are described in [3, 12].

2. Property gemeration: If there exists a mutant that is
killed by possibly several test cases and no property
exists to kill the mutant the use of dynamic slicing or
run-time monitoring of the test cases for the genera-
tion of a property that will kill the mutant could be
investigated. Related work includes Daikon [10] and
Terracotta [24], that both use tests as input.

3. Test suite reduction: If one property kills several mu-
tants and several test cases kill the same mutants then
we might be able to generate a test case that kills all
of the mutants that can replace multiple test cases.

4. Property set reduction: On one hand, we will reduce
the set of properties by comparing the mutants killed
by each property. If the mutants killed by a given
property are all killed by other properties it could be
removed. On the other hand, if one test case kills
several mutants and several properties in our set kill
the same mutants then we might be able to generate
a single property that kills all of the mutants that can
replace multiple properties.

Our approach to optimization should allow for both the
test suite and property set to be enhanced for use in isolation
and in hybrid approaches. Our optimization should provide
a more comprehensive test suite and property set that will
allow the testing and property-based analysis to each be
more comprehensive and succinct. Furthermore, if we re-
run our assessment on the improved test suite and property
set we might also be able to improve the hybrid approaches
identified by our assessment component.

4. EVALUATION PLAN

To answer the first part of our hypothesis and to evalu-
ate our assessment component we plan to run at least the
following four experiments:

1. Random Testing vs. Random Property-based Static
Analysis using Path Inspector

2. Coverage-based Testing vs. Hand Crafted Property-
based Static Analysis using Path Inspector

3. Assertion-based Testing vs. Model Checking Asser-
tions

4. Coverage-based Testing vs. Model Checking Asser-
tions vs. Model Checking Temporal Logic Properties

For Experiments 1 and 2 we will use a set of small C pro-
grams created by Siemens [16] that include a pattern replace
program, priority schedulers, lexical analyzers and others.
For Experiments 3 and 4 we will be using concurrent Java
programs (e.g., the file system Daisy and a banking exam-
ple). Based on our preliminary results (discussed in [4]) we
believe that further experimentation will show that in cer-
tain cases property-based analysis can find bugs that testing
can not find and vice versa.

To answer the second half of our hypothesis and evaluate
our optimization research approach we plan to investigate
optimization techniques using each of our example programs
from the assessment phase.

S. RELATED WORK

Test suite assessment. The assessment of test suites
is a well developed area. Relevant related work includes
code coverage techniques (e.g., branch coverage) as well as
the random schedulers often used to assess test suites for
concurrent code [8].

Property set assessment. Unlike test suite assessment,
property assessment with respect to source code does not
appear to be well researched. Instead, properties are often
assessed with respect to an abstract model of the code (e.g.,
finite state machines(FSMs), first-order logic). The use of
mutation metrics in formal analysis primarily occurs at the
model level, for example, to assess state-based coverage of
FSMs [15]. The previous uses of mutation in formal analysis
therefore differ from the research proposed here in the level
at which the coverage techniques are applied — we propose a
source code metric not a modelling language or FSM metric.
Approaches that use mutation of abstract models instead
of source code have benefits as a coverage metric but do
not provide an assessment metric that can be easily used to
compare property-based formal analysis to testing.

Test suite optimization Test case generation falls into

two distinct categories: code-based generation and specification-

or model-based generation. Our work is most related to
specification-based generation approaches which have used
FSMs and model checkers [11, 12], the Z language and type
checker [5] and other specification representations as the ba-
sis for generation. An interesting variation on specification-
based generation is operational abstraction using Daikon [14].
Operational abstraction uses the invariants generated from
source code to generate test cases. Test suite reduction
or minimization can also be divided into code-based and

specification-based approaches. In [22], Extended FSM (EFSM)

dependence analysis is used to identify and remove redun-
dant tests with respect to a particular requirement.

Property set optimization In the area of property set
optimization the most relevant related work is a property
generation approach that uses Daikon [10] and ESC/Java [7].
The approach has two steps: invariant detection and in-
variant verification [17]. First, invariants (possible prop-
erties) are generated dynamically using Daikon. Second,
the ESC/Java static checker verifies the correctness of the
generated invariants statically. Invariant verification is nec-
essary because the invariants generated dynamically may
be unsound. Other invariant generation approaches include
dynamic analysis approaches like DIDUCE [13] and Car-
rot [18], static analysis approaches (e.g., [9]) and the use of
the model checker SPIN [23].

6. EXPECTED CONTRIBUTIONS

We propose to conduct an empirical study to explore the
relationship and synergies between testing and property-
based analysis and the usefulness of property-based static
and formal analysis in detecting bugs in industrial source
code. To the best of our knowledge our proposed study is
a novel approach since no other work has used mutation
metrics at the source code level as a method of compar-
ing property-based analysis techniques with testing. Some
of the contributions of our study include an experimental
assessment component and empirical data (expected). In
addition to using our assessment component to conduct ex-
periments, other future work includes extending it to include
the ability to optimize test suites and property sets.

7. ACKNOWLEDGMENTS

I would like to thank my co-supervisors James R. Cordy
and Juergen Dingel for their contributions to this work.

8. REFERENCES

[1] P. Anderson. CodeSurfer/Path Inspector. In Proc. of
the IEEE Int. Conf. on Software Maintenance
(ICSM’04), page 508, Sept. 2004.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In Proc. of ICSE 2005, pages 402-411, 2005.

[3] D. Beyer, A. J. Chlipala, T. A. Henzinger, et al.
Generating tests from counterexamples. In Proc. of
ICSE 2004, pages 326-335, May 2004.

[4] J. S. Bradbury, J. R. Cordy, and J. Dingel. An
empirical framework for comparing effectiveness of
testing and property-based formal analysis. In Proc. of
Int. Work. on Program Analysis for Software Tools
and Engineering (PASTE 2005), Sept. 2005.

[5] S. Burton, J. Clark, and J. McDermid. Testing, proof
and automation. an integrated approach. In Proc. of
the Int. Work. of Automated Program Analysis,
Testing and Verification, Jun. 2000.

[6] J. C. Corbett, M. B. Dwyer, J. Hatcliff, et al. Bandera:
extracting finite-state models from java source code.
In Proc. of ICSE’00, pages 439-448. ACM Press, 2000.

[7] D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and
J. B. Saxe. Extended static checking. Technical Report
159, Compaq Systems Research Center, Dec. 1998.

[8] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded Java
programs. Concurrency and Computation: Practice
and Ezperience, 15(3-5):485-499, 2003.

[9] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: a general
approach to inferring errors in systems code. ACM
SIGOPS Operating Systems Review, 35(5):57-72, 2001.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Trans.
on Soft. Eng., 27(2):1-25, Feb. 2001.

[11] A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In Proc. of ESEC/FSE-", pages
146-162, 1999.

[12] G. Hamon, L. de Moura, and J. Rushby. Generating
efficient test sets with a model checker. In Proc. of the
Int. Conf. on Soft. Eng. and Formal Methods
(SEFM’04), pages 261-270, Sept. 2004.

[13] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proc. of
ICSE 2002, pages 291-301, 2002.

[14] M. Harder, J. Mellen, and M. D. Ernst. Improving
test suites via operational abstraction. In Proc. of
ICSE 2003, pages 60-71, May 2003.

[15] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. Coverage
estimation for symbolic model checking. In Proc. of
the ACM/IEEE Conf. on Design Automation, pages
300-305, 1999.

[16] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of
ICSE’94, pages 191-200, May 1994.

[17] J. W. Nimmer and M. D. Ernst. Automatic generation
of program specifications. In Proc. of ISSTA 2002,
pages 232-242, Jul. 2002.

[18] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P.
Reiss. Automated fault localization using potential
invariants. In Proc. of the Int. Work. on Automated
and Algorithmic Debugging (AADEBUG’2003), pages
273-276, Sept. 2003.

[19] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an
extensible and highly-modular software model
checking framework. In Proc. of ESEC/FSE 2003,
pages 267-276, 2003.

[20] J. Rushby. Disappearing formal methods. In Proc. of
the High-Assurance Systems Eng. Symp. (HASE’00),
pages 95-96, Nov. 2000.

[21] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3), Mar. 2005.

[22] B. Vaysburg, L. H. Tahat, and B. Korel. Dependence
analysis in reduction of requirement based test suites.
In Proc. of ISSTA 2002, pages 107-111, 2002.

[23] M. Vaziri and G. Holzmann. Automatic generation of
invariants in SPIN. In Proc. of the Int. SPIN Work.
(SPIN "98), Nov. 1998.

[24] J. Yang and D. Evans. Dynamically inferring temporal
properties. In Proc. of the Int. Work. on Program
Analysis for Software Tools and Engineering (PASTE
2004), Jun. 2004.

