
SUPPORTED BY

Jeremy S. Bradbury
Faculty of Science University of Ontario Institute of Technology
Oshawa Ontario Canada
jeremy.bradbury@uoit.ca

James R. Cordy, Juergen Dingel
School of Computing Queen’s University
Kingston Ontario Canada
{ cordy, dingel }@cs.queensu.ca

Mutation 2007 Sept. 10-11, 2007

Comparative Assessment of
Testing and Model Checking
Using Program Mutation

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 2

“
”

...humans are quickly
overwhelmed by
concurrency and find it
much more difficult to
reason about concurrent
than sequential code.
Even careful people miss
possible interleavings...

- Herb Sutter & James Larus, Microsoft [SL05]

[SL05] H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7):54–62, 2005.

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 3

In the future applications will
need to be concurrent to
fully exploit CPU throughput
gains [Sut05]

[Sut05] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb's
Journal, 30(3), Mar. 2005.

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 4

How can we increase our confidence in
the correctness of concurrent programs?

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 5

Research Goals

To compare the effectiveness and efficiency of
testing and model checking tools using mutation

To better understand any complementary
relationship that might exist between testing and
model checking

1.

2.

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 6

Our Approach

•  Conduct a controlled experiment to evaluate the
ability of testing and model checking

•  We use mutation to generate the faulty concurrent
programs required for our experiments

•  Mutation [DLS78] traditionally used within the
sequential testing community
–  evaluate the effectiveness of test suites

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints for test data selection: help for the practicing programmer. IEEE Computer, 11(4):34–41, Apr. 1978.

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 7

Research Methods

Method 2Method 1

Mutant Operators

PropertiesPropertiesQuality
Artifacts

PropertiesPropertiesQuality
Artifacts

Collection and Display of Results

Original
Example
Program

M1 M1 Mn. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 8

Approach
Selection

Experimental Setup

Model
Checking
with Java

PathFinder

Testing
with

ConTest

Mutant Operators

PropertiesPropertiesQuality
Artifacts

PropertiesPropertiesQuality
Artifacts

Collection and Display of Results

Original
Example
Program

M1 M1 Mn. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 9

Concurrency Testing with IBM’s ConTest

[EFN+02] O. Edelstein, E. Farchi, Y. Nir, G.Ratsaby, and S. Ur. Multithreaded java program test generation. IBM Systems Journal, 41(1):111– 125, 2002.

Run Test

Fix Bug

Finish

Check
Results

Correct Problem

Check
Coverage

Target

Not
Reached

1 . Rerun Test with heuristically
generated interleaving
2 . Record interleaving
3 . Update Coverage

Rerun test
using replay

Reached

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 10

Model Checking with Java PathFinder (JPF)

•  Model checking exhaustively
searches the entire state space of
a program
(i.e., all interleavings)

•  Allows for the analysis of
assertions and deadlock detection

[HP00] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer (STTT), 2(4), Apr. 2000.

…

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 11

Model Checking with Java PathFinder (JPF)

•  Detailed view of JPF architecture

http://javapathfinder.sourceforge.nett

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 12

Approach
Selection

Example
Program
Selection

Experimental Setup

Model
Checking
with Java

PathFinder

Testing with
ConTest

Mutant Operators

PropertiesPropertiesQuality
Artifacts

PropertiesPropertiesQuality
Artifacts

Collection and Display of Results

Original
Example
Program

M1 M1 Mn. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 13

Example Programs

•  Ticket Order Simulation
–  Simulates multiple agents selling tickets for a flight

•  Linked List
–  Involves storing data in a concurrent linked list (data

structure)
•  Buffered Writer

–  Two different types of writer threads are updated a
buffer that is being read by a reader thread

•  Account Management System
–  Manages a series of transactions between a number

of accounts

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 14

Metrics for the Example Programs

Example
Program

Lines of
Code

Statements Critical
Regions

Critical
Region

Statements

TicketsOrderSim 75 21 1 6 (28.5%)

LinkedList 303 70 2 4 (5.7%)

BufWriter 213 55 3 20 (36.4%)

AccountProgram 145 40 5 8 (20%)

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 15

Approach
Selection

Example
Program
Selection

Mutation
Selection

Experimental Setup

Model
Checking
with Java

PathFinder

Testing with
ConTest

ConMAn Operators

PropertiesPropertiesQuality
Artifacts

PropertiesPropertiesQuality
Artifacts

Collection and Display of Results

Original
Example
Program

ASK ASTK SPCR. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 16

The ConMAn Operators [BCD06a]

•  ConMAn = Concurrency Mutation Analysis
•  What are the ConMAn operators?

–  “…a comprehensive set of 24 operators for Java that
are representative of the kinds of bugs that often
occur in concurrent programs.”

–  based on an existing fault model for Java concurrency
[FNU03]

•  Can be used as a comparative metric
•  In this experiment we used a subset of the

operators for Java 1.4.
[BCD06a] J.S. Bradbury, J.R. Cordy, J. Dingel. Mutation operators for concurrent Java (J2SE 5.0). In. Proc. of Mutation 2006.

[FNU03] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In Proc. of IPDPS 2003.

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 17

Example ConMAn Mutation
SKCR – Shrink Critical Region

Object lock1 = new Object();
...
public void m1 () {
 <statement n1>
 synchronized (lock1) {
 //critical region
 <statement c1>
 <statement c2>
 <statement c3>
 }
 <statement n2>
...

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 18

Example ConMAn Mutation
SKCR – Shrink Critical Region

Object lock1 = new Object();
...
public void m1 () {
 <statement n1>
 //critical region
 <statement c1>
 synchronized (lock1) {
 <statement c2>
 }
 <statement c3>
 <statement n2>
...

Object lock1 = new Object();
...
public void m1 () {
 <statement n1>
 synchronized (lock1) {
 //critical region
 <statement c1>
 <statement c2>
 <statement c3>
 }
 <statement n2>
...

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 19

Example ConMAn Mutation
SKCR – Shrink Critical Region

Object lock1 = new Object();
...
public void m1 () {
 <statement n1>
 //critical region
 <statement c1>
 synchronized (lock1) {
 <statement c2>
 }
 <statement c3>
 <statement n2>
...

Object lock1 = new Object();
...
public void m1 () {
 <statement n1>
 synchronized (lock1) {
 //critical region
 <statement c1>
 <statement c2>
 <statement c3>
 }
 <statement n2>
...

No Lock Bug!

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 20

Example ConMAn Mutation
ESP – Exchange Synchronized Block Parameters

Object lock1 = new Object();
Object lock2 = new Object();
...
synchronized (lock1) {
 <statement c1>
 ...
 synchronized (lock2) {
 <statement c2>
 ...
 }
}
...

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 21

Example ConMAn Mutation
ESP – Exchange Synchronized Block Parameters

Object lock1 = new Object();
Object lock2 = new Object();
...
synchronized (lock2) {
 <statement c1>
 ...
 synchronized (lock1) {
 <statement c2>
 ...
 }
}
...

Object lock1 = new Object();
Object lock2 = new Object();
...
synchronized (lock1) {
 <statement c1>
 ...
 synchronized (lock2) {
 <statement c2>
 ...
 }
}
...

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 22

Example ConMAn Mutation
ESP – Exchange Synchronized Block Parameters

Object lock1 = new Object();
Object lock2 = new Object();
...
synchronized (lock2) {
 <statement c1>
 ...
 synchronized (lock1) {
 <statement c2>
 ...
 }
}
...

Object lock1 = new Object();
Object lock2 = new Object();
...
synchronized (lock1) {
 <statement c1>
 ...
 synchronized (lock2) {
 <statement c2>
 ...
 }
}
...

Deadlock bug!

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 23

Approach
Selection

Example
Program
Selection

Mutation
Selection

Program
Artifact
Selection

Experimental Setup

Model
Checking
with Java

PathFinder

Testing with
ConTest

ConMAn Operators

PropertiesPropertiesTests,
Assertions

PropertiesPropertiesTests,
Assertions

Collection and Display of Results

Original
Example
Program

ASK ASTK SPCR. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 24

Experimental Procedure

Model
Checking
with Java

PathFinder

Testing with
ConTest

ConMAn Operators

PropertiesPropertiesTests,
Assertions

PropertiesPropertiesTests,
Assertions

Collection and Display of Results

Original
Example
Program

ASK ASTK SPCR. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 25

Mutant
Generation

Experimental Procedure

Model
Checking
with Java

PathFinder

Testing with
ConTest

ConMAn Operators

PropertiesPropertiesTests,
Assertions

PropertiesPropertiesTests,
Assertions

Collection and Display of Results

Original
Example
Program

ASK ASTK SPCR. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 26

Mutant
Generation

Testing

Experimental Procedure

Model
Checking
with Java

PathFinder

Testing
with

ConTest

ConMAn Operators

PropertiesPropertiesTests,
Assertions

PropertiesPropertiesTests,
Assertions

Collection and Display of Results

Original
Example
Program

ASK ASTK SPCR. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 27

Mutant
Generation

Testing

Model
Checking

Experimental Procedure

Model
Checking
with Java

PathFinder

Testing with
ConTest

ConMAn Operators

PropertiesPropertiesTests,
Assertions

PropertiesPropertiesTests,
Assertions

Collection and Display of Results

Original
Example
Program

ASK ASTK SPCR. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 28

Mutant
Generation

Testing

Model
Checking

Collection
and Display
of Result

Experimental Procedure

Model
Checking
with Java

PathFinder

Testing with
ConTest

ConMAn Operators

PropertiesPropertiesTests,
Assertions

PropertiesPropertiesTests,
Assertions

Collection and Display of Results

Original
Example
Program

ASK ASTK SPCR. . .

Mutant
Example
Program

Comparison
Results Database

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 29

The ExMAn Framework [BCD06b]

•  ExMAn = Experimental Mutation Analysis

•  What is ExMAn?
–  “ExMAn is a reusable implementation for building

different customized mutation analysis tools for
comparing different quality assurance techniques.”

–  ExMAn automates the experimental procedure

[BCD06b] J.S. Bradbury, J.R. Cordy, J. Dingel. ExMAn: A generic and customizable framework for experimental mutation analysis. In. Proc. of Mutation 2006.

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 30

ConTest vs. Java PathFinder

• How do we better understand the
effectiveness of each technique?
–  We measure the mutant score for each
technique (dependent variable)

–  We vary the analysis technique (factor)
–  We fix all other independent variables

• quality artifacts (tests and properties),
example programs …

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 31

Quantity of Mutants Killed

0 5 10 15 20 25 30 35 40

Model Checking

with Java

PathFinder (JPF)

Testing with

ConTest

of Mutants

Assertion Violation Output Different Deadlock Detected
No Error Detected Tool Failure

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 32

Detection of Mutants

6%
6%

50%

38%

JPF & ConTest Neither

JPF ConTest

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 33

Mutant Scores of JPF, ConTest and ConTest
+JPF

Example
Program

ConTest
Mutant Score

JPF
Mutant Score

ConTest+JPF
Mutant Score

BufWriter 38.9% 50% 50%

LinkedList 50% 50% 50%

TicketsOrderSim 100% 100% 100%

AccountProgram 78% 56% 78%

TOTAL 56% 56% 62%

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 34

Mutant Scores of JPF, ConTest and ConTest
+JPF

Example
Program

ConTest
Mutant Score

JPF
Mutant Score

ConTest+JPF
Mutant Score

BufWriter 38.9% 50% 50%

LinkedList 50% 50% 50%

TicketsOrderSim 100% 100% 100%

AccountProgram 78% 56% 78%

TOTAL 56% 56% 62%

ConTest and JPF are most likely alternative fault detection
techniques with respect to the example programs.

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 35

Mutant Score for each Operator

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

ASK MSP RJS RSB RSK RTXC SHCR SKCR SPCR

Mutation Operators

%
 o

f
M

u
ta

n
ts

 D
e
te

c
te

d

Java PathFinder (JPF) ConTest

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 36

ConTest vs. Java PathFinder

• How do we better understand the
efficiency of each technique?
–  If ConTest and Java PathFinder are both
capable of finding a fault in a program is either
of them faster?

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 37

ConTest vs. Java PathFinder

•  Experimental Setup
– null hypothesis (H0): Time to detect a fault for JPF > Time

to detect a fault for ConTest
– dependent variable(s): analysis time
– independent variables:

• factor: analysis technique
• fixed: quality artifacts (tests and properties)
software under evaluation

 23

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 38

ConTest vs. Java PathFinder

•  Time for ConTest (seconds)
–  Mean = 2.0314
–  Median = 1.2030

•  Time for Java PathFinder (seconds)
–  Mean = 3.2835
–  Median = 2.3320

•  Conducted a paired t-test for n=19
–  P-value = 0.0085 (reject HO at the 0.05 level)
–  JPF is not more efficient than ConTest for our example

programs

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 39

Threats to Validity

•  internal validity
•  external validity:

– Threats to external validity include:
• the software being experimented on is not
representative of concurrent Java programs in
general

• The configurations of Java PathFinder and ConTest
limit our ability to generalize to each approach

•  construct validity
•  conclusion validity

 24

Mutation 2007 ● September 10-11, 2007 © J.S. Bradbury, J.R. Cordy, J. Dingel ● 2007 ● 40

Conclusions

•  For our example programs…
–  Effectiveness: ConTest and Java PathFinder are most

likely alternatives (potential to be used with other
examples in a complementary way).

–  Efficiency: ConTest is more efficient and can kill a
mutant in less time on average than Java PathFinder.

•  Future work is further empirical studies in order to
generalize our conclusions.

SUPPORTED BY

Jeremy S. Bradbury
Faculty of Science University of Ontario Institute of Technology
Oshawa Ontario Canada
jeremy.bradbury@uoit.ca

James R. Cordy, Juergen Dingel
School of Computing Queen’s University
Kingston Ontario Canada
{ cordy, dingel }@cs.queensu.ca

Mutation 2007 Sept. 10-11, 2007

Comparative Assessment of
Testing and Model Checking
Using Program Mutation
Research Talk

