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Abstract—Detecting bugs in concurrent software is challeng-
ing due to the many different thread interleavings. Dynamic
analysis and testing solutions to bug detection are often costly
as they need to provide coverage of the interleaving space
in addition to traditional black box or white box coverage.
An alternative to dynamic analysis detection of concurrency
bugs is the use of static analysis. This paper examines the use
of three static analysis tools (FindBugs, JLint and Chord) in
order to assess each tool’s ability to find concurrency bugs and
to identify the percentage of spurious results produced. The
empirical data presented is based on an experiment involving
12 concurrent Java programs.

Keywords-static analysis, concurrency, data race, deadlock,
empirical software engineering.

I. INTRODUCTION

The widespread adoption of multicore processors has lead
to an increase in demand for concurrent software that can
exploit the performance gains possible from utilizing more
than just a single core. For example, the Java programming
language, which has primarily been used to write sequential
programs is now often used to write multithreaded programs
using synchronization, locks, semaphores, barriers and ex-
changers. All of these language features aim to enhance the
sharing of data between threads in a Java program.

Although using concurrency can be beneficial with respect
to performance it can also be extremely difficult to do
correctly. The difficulty with concurrent programming has
been discussed since before multicore technology became
mainstream. The importance of this problem is reflected in
the following quote “Industry needs help from the research
community to succeed in its recent dramatic shift to parallel
computing. Failure could jeopardize both the IT industry
and the portions of the economy that depend on rapidly
improving information technology” [1]. One of the major
issues with concurrent programming is that it can lead to
kinds of bugs that are not possible in sequential programs.
For example, a concurrent program that shares data across
multiple threads can contain a bug that leads to a data
race or deadlock. In a language like Java, the interleaving
space of a concurrent program consists of all possible thread
schedules [2]. Detecting concurrency bugs like data races
or deadlocks is a challenging software quality assurance

problem because a particular bug may only exhibit itself
in one or a few interleavings of a program - such bugs are
often referred to as heisenbugs [3].

Although concurrency bugs are difficult to detect there are
tools that can significantly enhance the ability to find possi-
bly obscure concurrency bugs. One category of these tools
are static analysis tools like FindBugs [4], [5], JLint [6],
[7], RacerX [8], RELAY [9] and Chord [10], [11], [12].
Static analysis tools are typically considered to be fast since
execution of the program is not required. However, the use of
these tools has a potential for spurious analysis results which
can be time consuming to identify. Despite this shortcoming,
the effectiveness of static analysis tools in finding concur-
rency bugs can be clearly witnessed in the case of Coverity,
a very popular static analysis tool used in industry [13].
Another category of tools are dynamic analysis tools which
include testing and model checking tools like ConTest [14],
[15], CalFuzzer [16], CHESS [17] and Java PathFinder [18],
[19]. The dynamic analysis tools all involve executing the
program and in general are immune from spurious results.
Most dynamic concurrency bug detection tools include a
mechanism for executing different thread interleavings in
order to provide increased confidence in the quality of the
source code.

An important factor to consider when discussing static and
dynamic analysis tools is the increasing size and complexity
of programs under analysis. The size of concurrent software
offers a major challenge to the effectiveness of both static
and dynamic tools for detecting concurrency bugs [20]. The
successfully use of tools like Coverity and FindBugs in
industry provides evidence that static analysis tools can scale
to larger industrial software systems.

The goal of our research is to focus on the static analysis
class of bug detection tools. In particular, we are interesting
in answering the following questions:

• How effective are existing static analysis tools at de-
tecting concurrency bugs?

• What is the rate of false positives (spurious results) in
existing static analysis tools?

In order to answer the above questions we have conducted
an experiment which compares three existing tools that are
all capable of detecting concurrency problems in Java source



 

Tool Description Input Output Interface Kinds of static analysis performed? 
User defined properties or 
analysis? 

False 
positives? 

FindBugs General purpose static analysis 
tool that includes concurrency 
patterns 

Java 
bytecode 

text, html, 
xml, xdoc 

command-line, GUI, 
Eclipse plugin 

pattern matching,  
local data flow analysis 

Yes – user defined patterns  
(written in Java) 

Yes 

JLint Static analysis tool that includes 
detection of deadlocks, race 
conditions and wait-nosync 

Java 
bytecode 

text command-line, 
Eclipse plugin 
(Lint4J) 

dataflow analysis,  
lock graph analysis 

No Yes 

Chord Concurrency-specific analysis 
tool 

Java 
bytecode 

Html command-line thread-escape analysis, alias analysis, 
lock analysis, call graph analysis 

Yes – user defined dynamic 
analysis (written in Java) 

Yes 

Table I: Summary of Bug Detecting Tool Properties

code. The three tools are FindBugs, JLint and Chord. In our
experiment we use a set of 12 test programs to assess the
effectiveness of detecting actual concurrency bugs and we
measure the rate of false positives produced by the tools.
In the next section we will provide a brief overview of
each tool included in our study. In Section III we explain
our experimental setup and in Section IV we present the
results of our research. Threats to validity are described
in Section V and related work is described in Section VI.
Finally in Section VII we present our conclusions and future
work.

II. STATIC ANALYSIS TOOLS

In our experiment we selected three static analysis tools
to compare: FindBugs [4], [5], JLint [6], [7] and Chord [10],
[11], [12]. A high level comparison of the tools is presented
in Table I. We selected these tools because they all vary
in terms of the kind of analysis used – thus providing a
interesting subset of all of the techniques available. We will
now discuss the static analysis techniques used in FindBugs,
JLint and Chord.

A. FindBugs

FindBugs is a program which uses static analysis to
inspect Java bytecode for occurrences of bug patterns – a
code instance that might be an error. Bug patterns can arise
from a number of different situations such as: misuse of lan-
guage features; misunderstood API methods; misunderstood
invariants during maintenance; and simple typographical
mistakes [4].

FindBugs uses the Byte Code Engineering Library
(BCEL) and the ASM bytecode framework to analyze, create
and manipulate Java class files in order to find bug pattern
matches in Java programs [4]. From a user perspective,
FindBugs can be utilized in several different ways including
as a stand-alone command-line tool, a stand-alone GUI tool
and as a plugin for the Eclipse development environment.
FindBugs provides the user with very well structured and
well defined output and allows for bug pattern warnings to
be generated in a variety of formats including HTML, which
was used in our study.

By design, FindBugs is a general purpose static analysis
tool and can find many different kinds of bug patterns. We

 
Code Description 
DC  Possible double check of field 
DL  Synchronization on Boolean could lead to deadlock 
DL  Synchronization on boxed primitive could lead to deadlock 
DL  Synchronization on interned String could lead to deadlock 
DL  Synchronization on boxed primitive values 
Dm  Monitor wait() called on Condition 
Dm  A thread was created using the default empty run method 
ESync  Empty synchronized block 
IS  Inconsistent synchronization 
IS  Field not guarded against concurrent access 
JLM  Synchronization performed on Lock 
LI  Incorrect lazy initialization of static field 
LI  Incorrect lazy initialization and update of static field 
ML  Synchronization on field in futile attempt to guard that field 
ML  Method synchronizes on an updated field 
MSF  Mutable servlet field 
MWN  Mismatched notify() 
MWN  Mismatched wait() 
NN  Naked notify 
NP  Synchronize and null check on the same field. 
No  Using notify() rather than notifyAll() 
RS  Class's readObject() method is synchronized 
RV  Return value of putIfAbsent ignored 
Ru  Invokes run on a thread (did you mean to start it instead?) 
SC  Constructor invokes Thread.start() 
SP  Method spins on field 
STCAL  Call to static Calendar 
STCAL  Call to static DateFormat 
STCAL  Static Calendar 
STCAL  Static DateFormat 
SWL  Method calls Thread.sleep() with a lock held 
TLW  Wait with two locks held 
UG  Unsynchronized get method 
UL  Method does not release lock on all paths 
UL  Method does not release lock on all exception paths 
UW  Unconditional wait 
VO  A volatile reference to an array doesn't treat the array elements as 

volatile 
WL  Sychronization on getClass rather than class literal 
WS Class's writeObject() method is synchronized but nothing else is 
Wa  Condition.await() not in loop  
Wa  Wait not in loop Multithreaded correctness 

 
Table II: Multithreaded patterns detected by FindBugs [4]

focus on the category of multithreaded bug patterns (see
Table II) and do not consider other kinds of patterns in our
study.



B. JLint

JLint is similar to FindBugs in that it statically inspects
Java bytecode and performs syntax and semantic verifica-
tion. The JLint tool was originally written by Konstantin
Knizhnik and was further extended by Cyrille Artho [6],
[7]. We use the extended version of JLint in our study. We
have several interface choices for JLint and we have decided
to use the command-line interface of JLint in our research.

JLint performs both local and global data flow analysis
along with building lock dependency graphs for class depen-
dencies. Data flow analysis allows JLint to calculate possible
local variable values and catch redundant or suspicious
calculations. More importantly for this study, the use of lock
dependency graphs allows JLint to detect situations which
can cause synchronization errors [6]. Furthermore, JLint
uses semantic verification via data flow analysis and lock
dependency graphs to produce warnings under various syn-
chronization categories, such as: deadlock; raceCondition;
and waitNoSync. These categories can be further subdivided
into specific warnings that are identified by JLint [6].

C. Chord

Chord is a newer static analysis tool that was designed
and built specifically to detect concurrency bugs including
data races [21] and deadlocks [12]. There are 4 kinds of
static analysis used together in Chord to detect problems
with concurrency:

1) Call-graph analysis (also known as multi-graph anal-
ysis): It makes representations of calling relationships
between sub-routines in the program being analyzed.

2) Alias analysis: It determines if an object is accessed
by more than one thread. Two threads are considered
aliased if they point to the same referenced object.

3) Thread-escape analysis: It determines whether a ref-
erenced object can be restricted to a specific thread
without escaping to another thread.

4) Lock analysis: It analyzes locks in the code to ensure
that the locking and unlocking of critical sections in
the code has been done correctly.

The above analysis techniques were included in Chord
because they are both scalable and precise with respect to
the detection of concurrency bugs. Prior to using the above
analysis techniques Chord determines the analysis scope –
the reachable classes and methods. Analysis scope can be
detected statically or dynamically however we have chosen
to use the default static analysis technique known as rapid
type analysis (rta).

III. EXPERIMENTAL SETUP

We will now discuss the experimental setup of our
research. Specifically, we will define the purpose of our
experiment, the selection of example programs used in our
comparison, and the experimental procedure we followed.

A. Purpose

Recall that we have two research goals for this study: we
want to determine the effectiveness of using the three static
analysis concurrency bug detecting tools and we want to
measure the amount of spurious results produced by each
tool. In general, we would like to be able to generalize
our results to better understand the benefits of using static
analysis to find concurrency bugs.

In addition to our primary purpose we will also try to
provide some insight from a user perspective on the tools
themselves. In particular:

• usefulness of tool report output; and
• tool usability in terms of the general ease of use.

B. Example Program Selection

In order to satisfy our goals and determine the effective-
ness of FindBugs, JLint and Chord we needed to select a set
of example programs that would be independent and provide
an unbiased comparison of the three tools. After considering
several possible sources for example programs we decided
to use 12 example programs provided by the developers of
two dynamic analysis tools: Java PathFinder and ConTest.
To the best of our knowledge these programs were not used
by any of the developers of the static analysis tools evaluated
in our study.

Java PathFinder is an open source software model check-
ing tool developed by NASA [19]. We selected the following
6 programs (each with a single documented concurrency
fault) from the examples that were included with the Java
PathFinder source distribution:

• two different implementations of a classic deadlock
error (deadlock.d1, deadlock.d2)

• two different implementations of the dining
philosophers program, each exhibiting
starvation/deadlock faults (diningPhilosophers.dp1,
diningPhilosophers.dp2)

• two different implementations with race conditions
(race.r1, race.r2)

ConTest is a concurrency testing tool developed by re-
searchers at IBM’s Haifa Lab [14]. Unlike Java PathFinder
which includes its own scheduler to explore different thread
interleavings, ConTest inserts random delays before and after
synchronization points in order to increase the chance that
a different thread interleaving will be explored each time
the program is executed. The developers of ConTest also
maintain an IBM Concurrency Benchmark [22] which was
the source of our other 6 example programs. Again each
of these programs exhibit a single documented concurrency
fault, with the exception of one program, an airline ticket
sales application, in which two faults were present. The
programs selected from the IBM Concurrency Benchmark
were:



 
Warning 
Detected Priority Description of Warnings Warning Location Remarks 

Actual 
Bug? 

Java PathFinder example: deadlock.d1 
No warnings - - - - - 
Java PathFinder example: deadlock.d2: 
SWL MED 

 
 
 
 
MED 

SWL: Sleep with lock held 
Deadlock2$1.run() calls Thread.sleep 
with lock held could result in poor 
performance or deadlock 
 
Deadlock2$2.run() calls Thread.sleep 
with lock held could result in poor 
performance or deadlock 
 

Deadlock2.java [line 
34] 
Deadlock2$1.run() 
 
 
Deadlock2.java [line 
55] 
Deadlock2$2.run() 
 

Deadlock2$1.run() synchronizes 
resource1 and pauses before 
synchronizing resource2. This 
pause allows for resource 2 to be 
acquired by another process 
causing deadlock. Bug indirectly 
found. Deadlock described by 
bug is not valid. 

Yes 

Java PathFinder example: diningPhilosophers.dp1 
No LOW No: Using notify rather than notifyAll in 

diningPhilosophers.dp1.Fork.release(int) 
 only wakes one thread, may not 
wake the thread waiting for condition 
that is satisfied 
 

Fork.java [line 53] 
Fork.release(int) 

Notify wakes one thread allowing 
it to access the fork to grab it. All 
conditions are waiting for fork so 
this is invalid bug 

No 

Java PathFinder example: diningPhilosopthers.dp2 
No warnings - - - - - 
Java PathFinder example: race.r1  
Wa MED Wa: Wait not in loop in 

race.r1.Event.wait_for_event()  if 
monitor uses multiple conditions, the 
monitor caller waits for may not be one 
intended 

OldClassic.java [line 
80] 
Event.wait_for_event() 

Wait() called on monitor which 
does have multiple conditions. 
signal_event and wait_for_event 
are unsynchronized 

Yes 

Java PathFinder example: race.r2 
No warnings - - - - - 
 
 
 
 
 
 
 
 
 
 
 

Table III: Detailed FindBugs results for the Java PathFinder example programs

• three programs with deadlocks (account, deadlock,
deadlockexception)

• three programs containing weak reality synchronization
faults which are caused by improper synchronization
(airlineTickets, allocationvector, boundedbuffer)

We verified the presence of the documented concurrency
faults in our example programs by testing each program
using both ConTest and Java PathFinder. This additional
analysis allows us to increase our confidence in our assess-
ment of the effectiveness of the three static analysis tools.

C. Experimental Procedure

Our experimental procedure involved three primary steps:

1) Dynamic analysis preprocessing. As mentioned in
Section III-B we confirmed that the concurrency bugs
documented in our example programs were indeed
present using both Java PathFinder and ConTest. Dur-
ing this step we were also looking to identify any
additional bugs that may have been overlooked and
not documented by the authors of the programs.

2) Static analysis using FindBugs, JLint and Chord. After
confirming that the example programs contained real
concurrency faults we wrote scripts to automate the
analysis of the 12 example programs with each of
our three tools. All tools were run using their default
settings as described in the user documentation.

3) Assessment of the static analysis output produced by
FindBugs, JLint and Chord. Finally, after automati-
cally analyzing all of our programs with each tool we
considered each warning produced by the tools and
attributed them to a known bug or identified them as
spurious results. The assessment step was conducted
by hand and the details and rational for our assessment
will be discussed in Section IV.

D. Experimental Environment

The experimental environment chosen for this study was
a single laptop machine containing a dual core Intel T7200
2.0GHz processor with 2GB of RAM.

IV. RESULTS

This section describes the results of our study comparing
the static analysis tools: FindBugs, JLint and Chord. For
each tool we will provide a discussion of the output and
an analysis of the results. We will also consider the tool’s
limitations and the usability of the tool.

A. Analysis using FindBugs

Tool output and analysis results. After running Find-
Bugs on all 12 example programs from both Java PathFinder
and the IBM Concurrency Benchmark, a total of 38 possible
bugs were detected – this does not include the general
purpose bug warnings which were discarded. Of the 38 bug
warnings, only 12 of the warnings were matches to actual



 

 

Warning 
Detected Priority Description of Warnings Warning Location Remarks 

Actual 
Bug? 

IBM Concurrency Benchmark: account 
IS MED IS: Inconsistent synchronization of 

Account.amount; locked 63% of time 
-Mixed synch/unsynch access 
-one locked access by class own method 
-unsych access no more then 1/3  
 method intended to be thread safe is not 
synchronized 

Account.java 
Account.amount 
Unsyncrhonized access: 
Account.java [line 25] 
Main.java [line 78,81] 
 

Account.java [line 25] shows 
unsynchronized access to 
account.amount 
Shows interleaving of access which 
is not locked/thread safe 

Yes 

IBM Concurrency Benchmark: allocationvector  
No warning - - - - - 
IBM Concurrency Benchmark: boundedbuffer  
IS (x3) MED IS: Inconsistent Synchronization  

  -Buffer._BUFSIZE 
  -Buffer._bufArr 
  -Buffer._consoleOut 
 unsynchronized access of thread safe 
fields 

Buffer.java 
 

The accesses to these methods 
only occur during construction, do 
not need to be synchronized 
(thread safe) 

No 

No (x2) LOW No: Using Notify rather than NotifyAll()  
  -Buffer.deq(String) 
  -Buffer.enq(String) 
 only wakes one thread, may not wake 
correct thread waiting on condition 

Buffer.java 
Line 149 
Line 126 

When using Notify(), a single 
arbitrary thread is waken. For the 
boundedbuffer problem, this may 
wake the incorrect thread waiting to 
be activated on the condition of 
needing consumers or needing 
producers. This can result in a 
deadlock 

Yes 

IBM Concurrency Benchmark: deadlock 
SC MED SC: new deadLock(String, String) invokes 

Thread.start()  likely to be wrong if the 
class is ever extended/subclassed, since the 
thread will be started before the subclass 
constructor is started. 

deadLock.java [line 39] 
deadLock(String,String) 
calls Thread.start() 

Simple program, main creates new 
class which creates threads and 
runs them inside constructor. Run 
methods writes between two files 
concurrently 

No 

IBM Concurrency Benchmark: deadlockexception 
No warning - - - - - 
IBM Concurrency Benchmark: airlineTickets 
SC MED SC: new deadLock(String, String) invokes 

Thread.start()  likely to be wrong if the 
class is ever extended/subclassed, since the 
thread will be started before the subclass 
constructor is started. 

airlineTickets.java [line 
61] 
airlineTickets(String,Stri
ng) calls Thread.start() 

Simple program, main creates new 
class which creates threads and 
runs them inside constructor. Run 
methods writes between two files 
concurrently 

No 

Table IV: Detailed FindBugs results for the IBM Concurrency Benchmark programs

multithreaded bugs present in the programs. Tables III and
IV describe each of the 12 multi-threaded warnings, as well
as a discussion of each warning based on a manual code
inspection and analysis.

Table V shows a summary of the FindBugs results across
all of the programs. From the table we can see that, of the 12
multi-threaded warnings provided by FindBugs, only 6 were
determined via manual inspection to be real bug detections.
Also, of the 13 known concurrency bugs exhibited by the
12 programs, only 30.77% of the bugs were successfully
identified by the FindBugs tool. The FindBugs analysis of
each test program took between 7 and 14 seconds of CPU
time.

Tool limitations. It was found that FindBugs had a dif-
ficult time determining deadlock conditions unless synchro-
nized methods were used inconsistently. When programs
use synchronization inconsistently, FindBugs did a good job
of reporting the inconsistent usage, as well as determining
where the inconsistency occured and how much of the time
a resource was locked. FindBugs also was able to identify
incorrect usages of wait and notify statements which were

 
 
 
 

Total Programs Run 12 
Total Warnings 39 
Total Multithreaded Warnings 12 
Total Warnings Exhibiting Real Bugs 6 
Total Known Bugs Successfully Found 4 
Total Known Bugs Not Found 9 
Effectiveness of Finding all Known Bugs 30.77% 
Effectiveness of Warnings being Real Bugs 50.00% 

Table V: Summary of results for all example programs
analyzed using the FindBugs Tool

used in synchronized blocks to wait for and obtain access
to an object’s lock.

FindBugs was not able to detect any of the starvation
bugs located in the dining philosopher examples. Due to the
nature of static analysis tools it also could not recognize any
incorrect program interleavings which resulted in incorrect
output being displayed by the program.

FindBugs found multiple false positive concurrency bugs
patterns. For each bug pattern detected, FindBugs provides



 

Warning Description 
Warning 
Location Remarks 

Actual 
Bug? 

Java PathFinder example: deadlock.d1 
..\ConcurrencyBugExamples\deadlock\d1\deadlock\d1\Deadlock.ja
va:40: Loop 1: invocation of synchronized method 
deadlock/d1/Deadlock.foo() can cause deadlock. 

Deadlock.java 
Line 40 

Deadlock occurs when 
Deadlock.foo() is called 

Yes 

Java PathFinder example: deadlock.d2 
No warning - - - 
Java PathFinder example: diningPhilosophers.dp1 
No warning - - - 
Java PathFinder example: diningPhilosophers.dp2  
No warning - - - 
Java PathFinder example: race.r1 
No warning - - - 
Java PathFinder example: race.r2 
..\ConcurrencyBugExamples\race\r2\race\r2\Racer.java:6: Method 
race/r2/Racer.run() implementing 'Runnable' interface is not 
synchronized. 

Racer.java Line 
6 

Runnable interface not 
synchronized, identifies the 
interleaving of commands that 
should be synchronized 

Yes 

 
 

 

 

 

 

 

 

 

 

 

Table VI: Detailed JLint results for the Java PathFinder example programs

 

Warning Description 
Warning 
Location Remarks 

Actual 
Bug? 

IBM Concurrency Benchmark: account 
No warning - - - 
IBM Concurrency Benchmark: airlineTickets 
..\BugBenchmark\airlineTickets\airlineTickets\bug.java:95: Method 
airlineTickets/bug.run() implementing 'Runnable' interface is not 
synchronized. 

bug.java Line 95 Bug.run() is not synchronized. This 
lack of synchronization allows a 
ticket to be sold by a thread and 
then another ticket from a different 
thread to be sold (over max tickets) 
before the flag for stopping sales is 
set by the first thread. 

Yes 

IBM Concurrency Benchmark: allocationvector 
No warning - - - 
IBM Concurrency Benchmark: boundedbuffer 
..\BugBenchmark\boundedbuffer\boundedbuffer\Buffer.java:116: 
Method wait() can be invoked with monitor of other object locked. 
..\BugBenchmark\boundedbuffer\boundedbuffer\BufferNotify.java:2
84: Call sequence to method 
boundedbuffer/Buffer.enq(java.lang.Object) can cause deadlock in 
wait(). 
..\BugBenchmark\boundedbuffer\boundedbuffer\Buffer.java:138: 
Method wait() can be invoked with monitor of other object locked. 
..\BugBenchmark\boundedbuffer\boundedbuffer\BufferNotify.java:3
02: Call sequence to method 
boundedbuffer/Buffer.deq(java.lang.String) can cause deadlock in 
wait(). 

Buffer.java Line 
116 
BufferNotify.java 
Line 284 
Buffer.java Line 
138 
BufferNotify.java 
Line 302 

Program uses Notify, rather than 
NotifyAll method which causes 
incorrect thread to wake upon a 
condition.  

Yes 

IBM Concurrency Benchmark: deadlock 
..\BugBenchmark\deadlock\deadlock\deadLock.java:61: Method 
deadlock/deadLock.run() implementing 'Runnable' interface is not 
synchronized. 

deadlock.java 
Line 61 

deadlock.run() is not synchronized. 
This method is not needed to be 
synchronized. The bug occurs in 
the write method due to incorrect 
synchronization of file locks 

No 

..\BugBenchmark\deadlock\deadlock\deadLock.java:75: Field 
'hash' of class 'deadlock/deadLock' can be accessed from different 
threads and is not volatile. 

deadlock.java 
Line 75 

Field hash can be accessed from 
different threads but is not part of 
the synchronization errors 
displayed in the program. The 
ʻhashʼ field was created to allow for 
the monitoring of a deadlock 
situation between file writing 

No 

Table VII: Detailed JLint results for the IBM Concurrency Benchmark programs



 

 
Total Programs Run  11 
Total Warnings   31 
Total Multithreaded Warnings   9 
Total Warnings Exhibiting Real Bugs  7 
Total Known Bugs Successfully Found 4 
Total Known Bugs Not Found  8 
Effectiveness of Finding all Known Bugs 33.33% 
Effectiveness of Warnings being Real Bugs 77.78% 
 

Table VIII: Summary of results for all example programs
analyzed using the JLint Tool

a description of when each warning may cause a bug.
Therefore the user need to determine whether or not the
program is actually running in the way FindBugs describes
and whether or not the bug pattern identifies a real bug.
For example, FindBugs provided the warning SC: new
Class constructor() invokes Thread.start(). The description
of this warning states that a bug is likely to occur if the class
is ever extended or subclassed. For each instance that this
bug was detected during this study, this was never found to
be the case and a real bug was not detected.

Tool usability. We used the command line version of
FindBugs and our usability observations are based only
on this version. Overall, we found the warnings report to
be very well structured. The report first displayed project
information and metrics, detailing a list of the classes
analyzed, followed by the number of packages, classes, and
lines of code in the project, as well as the total number
of potential bugs found. FindBugs next displayed a list
of the kinds of bug patterns that were found. The bug
pattern categories are provided as hyperlinks, thus allowing
a user to proceed directly to the specific bug warning
information if necessary. Next, FindBugs displayed a bug
warning summary, describing the number of bug patterns
found for each category, before displaying all of the detailed
information discovered for each potential bug. This detailed
information was sorted by the kind of bug pattern that each
warning is an instance of. Finally, the report concludes with
a description of each kind of bug pattern that was found,
along with a possible scenario that may have caused the
warning.

B. Analysis using JLint

Tool output and analysis results. After running JLint on
all the test programs, except the deadlockexception program
which caused an error in JLint, a total of 31 possible bugs
were detected. Of the 31 bug warnings, only 9 of the
warnings described possible multithreaded bugs (determined
from bug warning descriptions). Tables VI and VII describe
each of the 9 multithreaded warnings, as well as some
remarks about the warnings based on a manual inspection
of the code and a comparison with the Java PathFinder and
Contest results.

Table VIII shows summary statistics of the 9 multi-
threaded warnings provided by JLint. Of the 9 warnings,
7 (over 75%) were positive bug findings. Also, of the
12 known concurrency bugs in the 11 example programs,
JLint only successfully identified 33.33% of the bugs. The
results show that JLint yields less false positive results than
FindBugs; however, this static analysis tool still only finds
a small number of the known concurrency bugs presented
in the example programs. The JLint analysis of each test
program took less than 1 second of CPU time.

Tool limitations. From the study results, it was found
that similar to FindBugs, JLint had a hard time detecting
most deadlock bugs in the example programs. JLint was
not effective for determining deadlocks and concurrency
errors in this study. For example, JLint uses lock graphs
in the analysis, however, it was still unable to detect the
synchronization error in two implementations of the classic
dinning philosopher’s problem. JLint did successfully catch
the incorrect usage of wait and notify statements from the
boundedbuffer example program and the warning description
was more detailed than FindBugs, making it much easier to
recognize this warning as a real bug.

Tool usability. Our discussion of usability is based on
our experience using the command-line version of JLint.
In general, JLint produced descriptive warning messages
that made it easy to determine the cause of the warnings.
However, complete descriptions for each warning could only
be found by referencing the JLint User Manual. The output
provided by JLint was not well structured, making this tool
difficult to use when analyzing many classes or when many
bug warnings were generated.

C. Analysis using Chord

Tool output and analysis results. After running Chord
on all of the example programs a total of 8 warnings and
31 different thread schedules were produced. All 8 of the
warnings described possible data race bugs and none of the
warnings referred to possible deadlocks. Tables IX and X
describe the warnings and comment on their accuracy based
on a manual code inspection.

Table XI shows summary statistics of the 8 multi-threaded
warnings produced by Chord for our 12 example programs.
All 8 of the warnings were identified as referring to actual
data race bugs, however, of the 13 know concurrency bugs
only 4 were detected (30.77%). When compared with Find-
Bugs and JLint, the results show that Chord finds a similar
number of the known concurrency bugs but without the false
positives. The Chord analysis of each test program took
longer than the analysis using FindBugs or JLint. Analysis
CPU times for Chord varied between 1 minute 50 seconds
and 2 minutes 14 seconds.

Tool limitations. From the study results, it was found
that similar to FindBugs and JLint, Chord had a hard time
detecting deadlock bugs. In fact, Chord did not find a



 

Warning Description Remarks 
Actual 
Bug? 

Java PathFinder example: deadlock.d1 
No warning - - 
Java PathFinder example: deadlock.d2 
No warning - - 
Java PathFinder example: diningPhilosophers.dp1 
No warning - - 
Java PathFinder example: diningPhilosophers.dp2  
No warning - - 
Java PathFinder example: race.r1 
Dataraces detected (x3) Detects data races on following 3 fields: race.r1.Event.count, 

race.r1.FirstTask.count, race.r1.SecondTask.count. In total it 
produces 16 different schedules that cause races on one of the 
above fields. 

Yes 

Java PathFinder example: race.r2 
Datarace detected Detects datarace on field race.r2.Racer.d and produces a single 

schedule. 
Yes 

 

 

 

 

 

 

 

 

 

 

 

Table IX: Detailed Chord results for the Java PathFinder example programs

 

 

 

 

Warning Description Remarks 
Actual 
Bug? 

IBM Concurrency Benchmark: account 
No warning - - 
IBM Concurrency Benchmark: airlineTickets 
Dataraces detected (x2) Detects dataraces on 2 fields: 

airlineTickets.bug.Num_Of_Tickets_Sold and 
airlineTickets.bug.StopSales. In total 3 schedules are produced 
for the first field and 1 schedule for the second field. 

Yes 

IBM Concurrency Benchmark: allocationvector 
No warning - - 
IBM Concurrency Benchmark: boundedbuffer 
Dataraces detected (x2) Detects dataraces on 2 fields: 

boundedbuffer.BufferNotify._finish and 
boundedbuffer.Buffer._active. There are 6 schedules for the first 
field and 4 schedule for the second field. 

Yes 

IBM Concurrency Benchmark: deadlock 
No warning - - 
IBM Concurrency Benchmark: deadlockexception 
No warning - - 

Table X: Detailed Chord results for the IBM Concurrency Benchmark programs

single deadlock bug in the example programs. Naik, et al.
in their paper discussing deadlock detection using Chord,
give a detailed discussion about the current implementation’s
limitations [12]. For example, currently Chord is capable
of detecting deadlocks that involve only two threads which
explains why many of the deadlocks in our examples went
undetected.

Tool usability. Chord was executed from the command-
line and produced very detailed html reports summariz-
ing possible concurrency bugs. In the case of data races,
warnings are categorized by fields or objects where the
data races were found. Each warning within the reports has
accompanying thread schedules and provides hyperlinks that
allow the user to go directly to the potential bug in the source
code.

 

 
Total Programs Run 12 
Total Warnings   8 
Total Multithreaded Warnings 8 
Total Warnings Exhibiting Real Bugs   8 
Total Known Bugs Successfully Found 4 
Total Known Bugs Not Found 9 
Effectiveness of Finding all Known Bugs 30.77% 
Effectiveness of Warnings being Real Bugs 100.00% 
 

Table XI: Summary of results for all example programs
analyzed using the Chord Tool

V. THREATS TO VALIDITY

We have designed our experiment with the aim to min-
imize the impact of threats to validity. Specifically, our
decisions were based on minimizing issues related to internal
validity, external validity, construct validity, and conclusion
validity.



Despite our best efforts there are still potential threats to
the validity of our experiment which need to be discussed.
One potential threat to external validity and our ability to
generalize our results is based on the static analysis tools we
have included in our study and the example programs which
we have utilized. With respect to the static analysis tools, our
conclusions about detecting concurrency bugs using static
analysis may not hold for tools that were not included in
this study. We selected FindBugs, JLint and Chord with
the intention of finding a representative subset of tools
however further experiments with additional concurrency
bug detection tools need to be conducted in order to make
strong assertions regarding the ability of static analysis as
a concurrency bug detection technique. With respect to the
example programs, we have selected a set of 12 programs
from two different sources, both of which are independent
from each other and the static analysis tools. However, we
have to acknowledge the possibility that the example pro-
grams may not be representative of concurrency programs
in general since this is extremely difficult to measure.

VI. RELATED WORK

A number of other empirical studies have been done to de-
termine the effectiveness of various static analysis tools with
respect to concurrency bug detection. A detailed comparison
of different ways in which concurrency static analysis is
carried out was conducted by Chamillard [23]. Corbett has
conducted an empirical study of 3 static analysis techniques
with respect to deadlock detection [24]. Both of these studies
were conducted almost 15 years ago and we view our
research as adding to the evidence provided by this earlier
work. Another related study is the work of Wojcicki and
Strooper who conducted a controlled experiment examining
static analysis tools in combination with code inspection in
order to detect concurrency bugs [25].

There are also a number of surveys and experiments
that compare static analysis techniques in general [26],
[27] and static analysis for other problems such as buffer
overflow [28] and more [29]. Furthermore, static analysis
tools have not only been compared with each other but they
have also been compared to non-static analysis tools [30].

Comparisons between various static analysis tools have
not only been used to determine under what conditions a
tool or technique is more effective than another but, these
comparisons have also been used to help create benchmarks
in bug detection. For example, the work by Shan Lu, et al.
classified various static analysis tools (and dynamic analy-
sis tools and model checker tools) by their strengths and
weaknesses to help create the BugBench benchmark [31].

VII. CONCLUSIONS

This paper compares three static analysis tools: FindBugs,
JLint and Chord. The goal of the experiment is to compare

the effectiveness of each tool at detecting known concur-
rency bugs as well as to measure the percentage of spurious
results produced by each tool.

Overall, the results of our experiment were mixed and no
tool was able to find more concurrency bugs than the others.
For the 12 example programs, FindBugs and Chord were
able to identify only 4 of the 13 known concurrency bugs.
JLint was able to identify 4 of the 12 known concurrency
bugs on 11 of the example programs1.

The program that produced the lowest percentage of spu-
rious results was Chord with 0% while FindBugs and JLint
produced 50% and 78% respectfully. We believe that Chord
was able to minimize the percentage of spurious results
due to the effective use of multiple types of static analysis
within the tool. This leads to one of the conclusions of our
experiment: Our experimental results confirm the benefits of
using multiple static analysis techniques in combination in
order to reduce the number of spurious results.

The use of multiple analysis techniques to enhance the de-
tection of concurrency bugs has been previously researched
in the literature [32], [33] and more research is needed
to determine how static analysis tools can be used in
combination to increase their effectiveness at detecting bugs
while decreasing the number of false positives. In the future
we would like to study which static analysis techniques are
the most complementary. We intend to conduct further ex-
periments with a wider selection of programs and additional
static analysis tools such as RacerX and RELAY.
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