How Good is Static Analysis
at Finding Concurrency
Bugs?

Devin Kester, Martin Mwebesa, Jeremy S. Bradbury

Software Quality Research Group
University of Ontario Institute of Technology
Oshawa, Ontario, Canada

devin.kester@mycampus.uoit.ca, {martin.mwebesa, jeremy.bradbury}@uoit.ca

GUOIT S G R Funding provided by: Q g:gzg

zzzzzzzzzzzzzzzzzzzzzzzzz

Motivation

« Bug detection in concurrent software is very challenging
due to the many thread interleavings.

« Concurrency bug detection techniques often involve
dynamic and/or static analysis

* Dynamic analysis is rather costly because it needs to
cover all thread interleavings

« Static analysis offers a less costly alternative but is
susceptible to spurious results

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury

The Goals

‘I How effective are existing static analysis
e tools at detecting concurrency bugs?

What is the rate of false positives
e (spurious results) in existing static analysis

tools?

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury

The Static Analysis Tools

* The tools selected for the experiment were:
* FindBugs
e JLint
* Chord

 Why these 3 tools? The tools were selected because
they vary in the kinds of static analysis they perform.

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury

FindBugs [HP04]

* A general purpose static analysis
tool that finds instances of different
bug patterns in Java bytecode

 \We have focused on the multi-

threaded bug patterns only

« Types of static analysis used:

Pattern matching
Data flow analysis

000 /7 fogugs™ - Fid s

IRy

FindBugs

because It

s Cf

™ Yo,
qgusny K %
d 9 »

3)

% O &

18 / TRy N

Q
47 N

|
|
|
|
|
|
|
=3 |

o J,‘ﬁndbugf.sau’(fio(gg net/ B

¥ FindBugs™ - Find Bugs in Java Programs

uses static analysis to look for bugs in Java
Lesser GNU Public License. The)
The University of Maryland. As

' i vhich

‘Seasy” This i the web page for FindBugs, a program W
codf:| s free software, istributed under the terms of the
name FindBugs™ and the FindBugs logo are trademarked by

g:: “'zdd :‘:"’ of July, 2008, FindBugs has been ‘downloaded more than 700,000 times.
Useryandsupporers " later to run, However, it can analyze programs
FindBugs requires JRE (or JDK) 1.5.0 or lat ;
““";“jhb' compxle% f’:rq any version of Java, The curent verson of FindBugs is 139, reeased on.
i 20:11:47 EDT, 21 Augast 2009, We e very nterested i geting feedback on how 0 improve
NnulGeEAT) EndBugs
[/
B Change | Tals | Papes | Sponsors | Support
Malnglsts
Docaments and Publications
Lo New
Downloads * JavaOne talk: Slides from my JavaOne talk, Mistakes That Matter,
FindBugs Swag . :hi::mym m .&Jm We are previewing FindBugs community review, in
’ ; 1 0pen souree projects (i.., mark issues as "must fix" or
g:::m mostly hamiless"), and those reviews are automatically shared with other reviewers,
s
Repoinghugs Thi i pr-beta relase, ot ready for deployiment, The jon wil
bpug A pre-beta 1. The implementation will be
D::,: ':ms undergoing significant changes before general availabiliy,
APl[po fanes] Inially, w i
e ', We are posting results for:
SFproject page © Sun's JDK 7
rowse source o Eglipg ‘57
Litest codechnges . (;o@:yﬁﬁ%gs Fixit, G -
they uy 0 getall of their ot s o of engineeing fixis, specia g
improving the sygtems o (;ISOTI?A[?N bt pecic poblem Mhniqylfczgm
; !) - A fixit migh i r
intemal testing, Temoving TODO's from erjumgm[alwszrfl:vinm‘:l Ssvc " sty
OnMay 13.14, Gogy o
2 1%, Google held a globg) fixi
for finding goging w2 SO0 fiit for UMDY i,
B0 g s o it Th fozul;mngg)ug; 100k st analysis o)
o ERCStconfidence s g i kit was o get
N engineers decide whigh g 1 o 0Y FindBugs g 8 Teeback oy
— hich e, i any, eggog g 82 Google, and It Google

SCAM 2010

[HP04] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN Notices, vol. 39, no. 12, pp. 92—-106, 2004.

© 2010 D. Kester, M. Mwebesa, J.S. Bradbury

JLint [Art01]

« Similar to FindBugs, JLint is a general purpose static
analysis tool that inspects Java bytecode

* It includes concurrency bug pattern detection —
specifically deadlocks, race conditions and improper
use of wait-notify synchronization constructs

« Types of static analysis used:
» Data flow analysis
» Analysis of lock dependency graphs

[Art01] C. Artho, “Finding faults in multi-threaded programs,” Master’s thesis,
Institute of Computer Systems, Federal Institute of Technology, Zurich/Austin, 2001.

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 6

Chord [NAO07]

* A newer tool. Special purpose tool built to detect
concurrency bugs — both statically and dynamically

* For the purposes of this experiment we use only the
static analysis features

« Types of static analysis used:
« Call-graph (multi-graph) analysis
 Alias analysis
* Thread-escape analysis
* Lock analysis

[NA07] M. Naik and A. Aiken, “Conditional must not aliasing for static race detection,”
ACM SIGPLAN Notices, vol. 42, no. 1, 2007.

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury

Experimental Setup |

« We used 12 example programs in our experiment

* 6 programs provided by developers of Java
Pathfinder — NASA

« 6 programs provided by the developers of ConTest —
researchers at IBM’s Haifa Lab

« The programs contained examples of deadlock bugs,
data race bugs and weak reality synchronization bugs
(caused by improper synchronization)

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury

Experimental Setup I

 Why these 12 programs?

SCAM 2010

Publicly available sources — allow for reproducing
results

Developed by third party (not used by the developers
of the 3 static analysis tools under experiment)

Each program has a single documented concurrency
fault

Each program is small enough to do a manual
assessment of the experimental results

© 2010 D. Kester, M. Mwebesa, J.S. Bradbury

Experimental Procedure

Dynamic analysis preprocessing
e Confirmed that the concurrency bugs in the 12
example programs could be reproduced in JPF and

ConTest

2 Analysis with FindBugs, JLint and Chord
O

Analyzed each of the 12 example programs using
each of the 3 static analysis tools — default settings

were used
3 Assessment of the static analysis output
° Each warning produced in Step 2 is examined and
the cause of the warning is attributed to a known bug
or the warning is identified as a false positive - done
manually

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 10

Results — Effectiveness

Static Analysis Tool FindBugs

Programs Analyzed

Concurrency Bugs Present 13 12 13
Warnings Generated 39 31 8
Multi-threaded Warnings Generated 12 9 8
Warnings Exhibiting Real Bugs 6 7 8

(50.00%) (77.78%) (100.00%)

Known Bugs Successfully Found 4 4 4
(30.77%) (33.33%) (30.77%)

Known Bugs Not Found 9 8 9

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 11

Results — Effectiveness

Static Analysis Tool FindBugs

Programs Analyzed

Concurrency Bugs Present 13 12 13
Warnings Generated 39 31 8
Multi-threaded Warnings Generated 12 9 8
Warnings Exhibiting Real Bugs 6 7 8

(50.00%) (77.78%) (100.00%)
Known Bugs Successfully Found 4 4 4

(30.77%) (33.33%) (30.77%)
Known Bugs Not Found 9 8 9

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury

12

Results — Effectiveness

Static Analysis Tool FindBugs

Programs Analyzed

Concurrency Bugs Present 13 12 13
Warnings Generated 39 31 8
Multi-threaded Warnings Generated 12 9 8
Warnings Exhibiting Real Bugs 6 7 8

(50.00%) (77.78%) (100.00%)

Known Bugs Successfully Found 4 4 4
(30.77%) (33.33%) (30.77%)

Known Bugs Not Found 9 8 9

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 13

Results — Percentage of Bugs Detected By Type

Deadlocks

Data races

Weak reality synchronization

0.0% 25.0% 50.0% 75.0% 100.0%
“FindBugs = Jlint Chord

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 14

Results — Tools in Combination

FindBugs Chord

R1

D2
7.69% 0%
Account
15.38% Boundedbuff
7.69% 15.38%
0%
Airlinetickets
R2
Found by No tool -
(6/13 bugs)
Dpl, Dp2, o1
Deadlockexception,
Deadlock, 7.69% .
Boundbuff2, JLint
Allocationvector
46.15%

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury

15

Some Observations

Spurious results
* FindBugs and JLint — numerous
* Chord - none
All tools had issues with deadlock detection
All tools performed better in detecting data races
« FindBugs and JLint — 50 % effective
 Chord — 100 % effective
Efficiency

« Chord took about 2 minutes, FindBugs between 7 and
14 seconds, JLint under a second

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 16

Threats to Validity

« We designed and ran our experiment with the goal of
minimizing the impact of threats to validity

« Potential threats to the validity of our results:
* Does not generalize to tools not included in our study

 The 12 sample programs used may not be
representative of concurrency programs in general
(especially since all are small in size)

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 17

Conclusion

« Effectiveness of finding concurrency bugs was about the
same for all tools

 All of the tools had trouble detecting deadlocks statically

« Chord had the least (zero) spurious results most likely due
to the effective use of multiple forms of static analysis

* For consideration - Active testing:

« Use of static analysis techniques to find potential bugs
then dynamic analysis on the potential bugs, to isolate
the real bugs (CalFuzzer [JNPS09])

[JNPS09] P. Joshi, M. Naik, C.-S. Park, and K. Sen, “CalFuzzer: an extensible active testing framework for concurrent programs,” in Proc. of
the 21st International Conference on Computer Aided Verification (CAV’09), 2009, pp. 675-681.

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 18

Future Work

Need more experiments!
* Need to include more static analysis tools
(e.g., RacerX [EAO3] and RELAY [VJLO7])

 RacerX detects both deadlocks and data race
conditions

» Relay detects data races and was developed
with scalability as one of if it's main goals

* Need to increase the number of sample programs

[EA03] D. Engler and K. Ashcraft, “RacerX: effective, static detection of race conditions and deadlocks,” in Proc. of the 19th ACM Symposium
on Operating Systems Principles (SOSP’03), 2003, pp. 237-252.

[VJLO07] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: static race detection on millions of lines of code,” in Proc. of the 6t joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering (ESEC-FSE '07),
2007, pp. 205-214.

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 19

“Controversial”’ Question

« Can static analysis techniques be made as effective (or
close to as effective) as dynamic analysis techniques in
finding concurrency related bugs?

« By effective | mean:
* Finding the same number of concurrency related
bugs
» Reducing spurious results to a negligible level

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 20

How Good is Static Analysis
at Finding Concurrency
Bugs?

Devin Kester, Martin Mwebesa, Jeremy S. Bradbury

Software Quality Research Group
University of Ontario Institute of Technology
Oshawa, Ontario, Canada

devin.kester@mycampus.uoit.ca, {martin.mwebesa, jeremy.bradbury}@uoit.ca

G UOIT S G R Funding provided by: Q g:gzg

zzzzzzzzzzzzzzzzzzzzzzzzz

