
Funding provided by:

How Good is Static Analysis
at Finding Concurrency

Bugs?

Devin Kester, Martin Mwebesa, Jeremy S. Bradbury
Software Quality Research Group

University of Ontario Institute of Technology
Oshawa, Ontario, Canada

devin.kester@mycampus.uoit.ca, {martin.mwebesa, jeremy.bradbury}@uoit.ca

Motivation

•  Bug detection in concurrent software is very challenging
due to the many thread interleavings.

•  Concurrency bug detection techniques often involve
dynamic and/or static analysis
•  Dynamic analysis is rather costly because it needs to

cover all thread interleavings
•  Static analysis offers a less costly alternative but is

susceptible to spurious results

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 2

The Goals

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 3

How effective are existing static analysis
tools at detecting concurrency bugs?

What is the rate of false positives
(spurious results) in existing static analysis
tools?

1.
2.

The Static Analysis Tools

•  The tools selected for the experiment were:
•  FindBugs
•  JLint
•  Chord

•  Why these 3 tools? The tools were selected because
they vary in the kinds of static analysis they perform.

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 4

FindBugs [HP04]

•  A general purpose static analysis
tool that finds instances of different
bug patterns in Java bytecode
•  We have focused on the multi-

threaded bug patterns only
•  Types of static analysis used:

•  Pattern matching
•  Data flow analysis

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 5

[HP04] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN Notices, vol. 39, no. 12, pp. 92–106, 2004.

JLint [Art01]

•  Similar to FindBugs, JLint is a general purpose static
analysis tool that inspects Java bytecode
•  It includes concurrency bug pattern detection –

specifically deadlocks, race conditions and improper
use of wait-notify synchronization constructs

•  Types of static analysis used:
•  Data flow analysis
•  Analysis of lock dependency graphs

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 6

[Art01] C. Artho, “Finding faults in multi-threaded programs,” Master’s thesis,
Institute of Computer Systems, Federal Institute of Technology, Zurich/Austin, 2001.

Chord [NA07]

•  A newer tool. Special purpose tool built to detect
concurrency bugs – both statically and dynamically
•  For the purposes of this experiment we use only the

static analysis features
•  Types of static analysis used:

•  Call-graph (multi-graph) analysis
•  Alias analysis
•  Thread-escape analysis
•  Lock analysis

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 7

[NA07] M. Naik and A. Aiken, “Conditional must not aliasing for static race detection,”
ACM SIGPLAN Notices, vol. 42, no. 1, 2007.

Experimental Setup I

•  We used 12 example programs in our experiment
•  6 programs provided by developers of Java

Pathfinder – NASA
•  6 programs provided by the developers of ConTest –

researchers at IBM’s Haifa Lab
•  The programs contained examples of deadlock bugs,

data race bugs and weak reality synchronization bugs
(caused by improper synchronization)

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 8

Experimental Setup II

•  Why these 12 programs?
•  Publicly available sources – allow for reproducing

results
•  Developed by third party (not used by the developers

of the 3 static analysis tools under experiment)
•  Each program has a single documented concurrency

fault
•  Each program is small enough to do a manual

assessment of the experimental results

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 9

Experimental Procedure

Dynamic analysis preprocessing
Confirmed that the concurrency bugs in the 12
example programs could be reproduced in JPF and
ConTest

Analysis with FindBugs, JLint and Chord
Analyzed each of the 12 example programs using
each of the 3 static analysis tools – default settings
were used

Assessment of the static analysis output
Each warning produced in Step 2 is examined and
the cause of the warning is attributed to a known bug
or the warning is identified as a false positive - done
manually

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 10

1.
2.
3.

Results – Effectiveness

Static Analysis Tool FindBugs JLint Chord

Programs Analyzed 12 11 12

Concurrency Bugs Present 13 12 13

Warnings Generated 39 31 8

Multi-threaded Warnings Generated 12 9 8

Warnings Exhibiting Real Bugs 6
(50.00%)

7
(77.78%)

8
(100.00%)

Known Bugs Successfully Found 4
(30.77%)

4
(33.33%)

4
(30.77%)

Known Bugs Not Found 9 8 9

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 11

Results – Effectiveness

Static Analysis Tool FindBugs JLint Chord

Programs Analyzed 12 11 12

Concurrency Bugs Present 13 12 13

Warnings Generated 39 31 8

Multi-threaded Warnings Generated 12 9 8

Warnings Exhibiting Real Bugs 6
(50.00%)

7
(77.78%)

8
(100.00%)

Known Bugs Successfully Found 4
(30.77%)

4
(33.33%)

4
(30.77%)

Known Bugs Not Found 9 8 9

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 12

Results – Effectiveness

Static Analysis Tool FindBugs JLint Chord

Programs Analyzed 12 11 12

Concurrency Bugs Present 13 12 13

Warnings Generated 39 31 8

Multi-threaded Warnings Generated 12 9 8

Warnings Exhibiting Real Bugs 6
(50.00%)

7
(77.78%)

8
(100.00%)

Known Bugs Successfully Found 4
(30.77%)

4
(33.33%)

4
(30.77%)

Known Bugs Not Found 9 8 9

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 13

Results – Percentage of Bugs Detected By Type

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 14

0.0% 25.0% 50.0% 75.0% 100.0%

Deadlocks

Data races

Weak reality synchronization

FindBugs Jlint Chord

Results – Tools in Combination

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 15

Some Observations

•  Spurious results
•  FindBugs and JLint – numerous
•  Chord - none

•  All tools had issues with deadlock detection
•  All tools performed better in detecting data races

•  FindBugs and JLint – 50 % effective
•  Chord – 100 % effective

•  Efficiency
•  Chord took about 2 minutes, FindBugs between 7 and

14 seconds, JLint under a second

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 16

Threats to Validity

•  We designed and ran our experiment with the goal of
minimizing the impact of threats to validity

•  Potential threats to the validity of our results:
•  Does not generalize to tools not included in our study
•  The 12 sample programs used may not be

representative of concurrency programs in general
(especially since all are small in size)

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 17

Conclusion

•  Effectiveness of finding concurrency bugs was about the
same for all tools

•  All of the tools had trouble detecting deadlocks statically

•  Chord had the least (zero) spurious results most likely due
to the effective use of multiple forms of static analysis

•  For consideration - Active testing:

•  Use of static analysis techniques to find potential bugs
then dynamic analysis on the potential bugs, to isolate
the real bugs (CalFuzzer [JNPS09])

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 18

[JNPS09] P. Joshi, M. Naik, C.-S. Park, and K. Sen, “CalFuzzer: an extensible active testing framework for concurrent programs,” in Proc. of
the 21st International Conference on Computer Aided Verification (CAV’09), 2009, pp. 675–681.

Future Work

Need more experiments!

•  Need to include more static analysis tools
(e.g., RacerX [EA03] and RELAY [VJL07])

•  RacerX detects both deadlocks and data race
conditions

•  Relay detects data races and was developed
with scalability as one of if it’s main goals

•  Need to increase the number of sample programs

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 19

[EA03] D. Engler and K. Ashcraft, “RacerX: effective, static detection of race conditions and deadlocks,” in Proc. of the 19th ACM Symposium
on Operating Systems Principles (SOSP’03), 2003, pp. 237–252.

[VJL07] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: static race detection on millions of lines of code,” in Proc. of the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering (ESEC-FSE ’07),

2007, pp. 205–214.

“Controversial” Question

•  Can static analysis techniques be made as effective (or
close to as effective) as dynamic analysis techniques in
finding concurrency related bugs?
•  By effective I mean:

•  Finding the same number of concurrency related
bugs

•  Reducing spurious results to a negligible level

SCAM 2010 © 2010 D. Kester, M. Mwebesa, J.S. Bradbury 20

Funding provided by:

How Good is Static Analysis
at Finding Concurrency

Bugs?

Funding provided by:

Devin Kester, Martin Mwebesa, Jeremy S. Bradbury
Software Quality Research Group

University of Ontario Institute of Technology
Oshawa, Ontario, Canada

devin.kester@mycampus.uoit.ca, {martin.mwebesa, jeremy.bradbury}@uoit.ca

