
UML MODELLING OF DESIGN PATTERNS FOR WIRELESS
SENSOR NETWORKS

John K. Jacoub, Ramiro Liscano, Jeremy S. Bradbury and Jared Fisher
University of Ontario Institute of Technology, Oshawa, Onatrio, Canada
{John.Khalil, Ramiro.Liscano, Jeremy.Bradbury, Jared.Fisher}@uoit.ca

Keywords: Wireless Sensor Network (WSN), Modelling, Design Patterns.

Abstract: Wireless Sensor Network (WSN) systems are deployed to monitor specific phenomena. The design of
WSNs is prone to errors and debugging and is very challenging due to the complex interactions of software
components in a sensor node. This paper presents a set of UML patterns that can be used as a basis for
software design of WSN systems. The UML patterns are used to capture the design components, the
application flow, the components’ behaviour, and the interaction between the components and the
application design. The design patterns for WSNs are justified by applying them to the WSN-RFID
application that integrates RFIDs and sensor nodes in order to support authenticated point-to-point
communication with a sensor node.

1 INTRODUCTION

Wireless sensor networks (WSNs) consist of many
wireless nodes and used to monitor specific
phenomena. The nodes communicate with each
other wirelessly to deliver the sensed data to a
collector node, where the data is normally further
processed or sent to another network. Most sensor
nodes typically contain sensors, an analogue to
digital converter (ADC), and some type of limited
I/O, like LEDs (for debugging purposes), a radio
unit, some form of power source, and a micro-
processor. Applications are programmed into the
micro-processor either directly or by leveraging an
operating system (OS),

The design process of WSN applications is very
challenging for the following reasons; the
development of the application normally occurs at
the coding layer and does not typically go through a
design stage at a higher abstraction layer which
prevents the design to go through the software
development cycle (Losilla, 2007), thus the
application design is prone to errors due to the
complexity of WSN systems; debugging the code is
very challenging since sensor nodes are embedded
systems with limited I/O capability to display the
state of the code (Mozumdar, 2008); the application
has to operate reliably since it is difficult to

maintain the nodes once they are deployed in the
field.

Modelling of a WSN enables the designer to
capture the design at higher abstraction layers before
the actual implementation of the application. This
facilitates fixing and correcting design errors using
diverse methods of design analysis. Early model
analysis for the design enables the user to evaluate
the design before the actual deployment.

This paper presents a set of design patterns that
help a designer in capturing the WSN system at the
software modelling layer using UML diagrams. We
define a group of stereotype UML classes to capture
the hardware and middleware modules of the WSN.
Also, the system behaviour elements such as timers,
events, and application flow are captured by using
the UML state diagrams. The model patterns are
justified by using a case study deployment example,
called Frequency Identification (RFID) Sensor
Nodes.

The rest of the paper is organized in the
following manner: Section 2 contains the related
work; Section 3 discusses the WSN design model
patterns; Section 4 talks about applying the model
patterns to WSN case study; Section 5 provides the
conclusion and future work.

2 RELATED WORK

In order to better understand the state of the art in
software modeling for sensor networks we did an
extensive survey of the work in that area (Jacoub,
2012) that surveyed 9 modelling techniques for
WSNs. The survey classified the modelling
techniques according to the capability to capture the
hardware and middleware components, the network
topology, the node behaviour, and the network
behaviour of a WSN.

A model driven engineering approach has been
developed in Eclipse to generate the nesC code for a
design from the UML diagrams (Losilla et. al.,
2007). The design goes through three layers of
models, which are the independent UML model, the
domain specific model, and then the platform
specific model. The paper has specified a group of
rules which control the transformation from one
model to another. The last step in their approach is
to generate the nesC code from the platform specific
model. Our approach has one layer of modelling and
aims to capture the design components and
interaction between the components through using
UML class diagrams and UML state-charts.
Capturing the design behaviour at the UML layer
enables the designer to fix the design error before
the actual implementation.

A UML profile has been developed for voice
wireless communication platforms (Chen,
2010).The profile contains stereotypes, constraints,
and tags for such platforms. The tags contain
information about the bandwidth, throughput,
latency, and power consumption of the components.
The tags are used to verify the system behaviour
after implementation. The profile contain deployed,
component, and class diagrams for the platform. Our
approach has defined stereotypes for WSN systems
and focus on the behaviour side of the full system
(operating system and the deployed applications)
through using the animated state diagrams.

We have also determined that there is no
published material that tries to present a set of
design patterns for WSNs. We have though seen
such design patterns presented in the tinyOS
Programing manual (Levis, 2009)but these design
patterns are very specific to tinyOS programming as
opposed to patterns that can be used at the software
modelling layer.

3 WSN DESIGN PATTERNS

This section presents a set of design patterns, which
can be used to support the modelling and design of

WSNs. We have used class diagrams and state-
charts features to explain these patterns. The UML
state-charts are used to capture the behaviour of both
hardware and middleware modules. We also take
advantage of animated state-charts, which are used
to capture the application design behaviour, the flow
of the data across the system components, and the
interaction between the system components. The
animated state charts enable the designer to test the
flow of the design.

The design patterns came about from experience
in trying to model a WSN application in the tinyOS
environment as well as from the tinyOS
programming guide (Levis, 2009).

Through the process of trying to capture the
model using a language independent notation like
UML we have been able to generalize some tinyOS
specific concepts like the concept of “wiring”, which
is unique to the tinyOS environment, into a general
interface association captured by composite classes.

3.1 WSN Hardware and Middleware
Component Pattern

All WSN applications can be designed from a set of
components that represent hardware or middleware
components. In this work we define a group of
classes that are used as stereotype classes to capture
these hardware and middleware components. The
defined stereotype classes capture the methods,
parameters, and behavioural flow of the
components. The behavioural flow of the
components is captured by using animated state
diagrams. The animated state charts are extremely
useful for the following reasons:

 Validation of the design flow. There are many
behavioural flows where events are expected for
normal operation. If these do not occur there is a
design flaw in the application.

 Analysis for power consumption. Since the
system application can be animated it is
possible to compute the power consumption for
those deterministic scenarios as explained in the
future work section.

3.1.1 The Hardware Stereotype Classes

Many typical hardware classes are used in WSN
nodes such as radio, LEDs, and ADC modules. As
an example, let us take a specific ADC module
called the MDA used in the crossbow motes for
capturing data. This MDA module has a MDA
interface component that is captured in our design as
a UML class.

The behaviour of the MDA class is captured by
using state-chart (see Figure 1). The state-chart
contains the triggered operation called sensor_on,
which captures the behaviour of the TinyOS
operation read. Once the method sensor_on is
called, the state diagram changes the state from Idle
to the ADC On state to model the action of sensing.
The application stays in this state for 250 ms and
then triggers the event readDone. The time
parameter 250 is calculated based on real time
measurements for the sensor behaviour in (Zheng,
2010). This state chart also captures the MDA
component’s capability to turn the sensor’s
excitation on and off.

Figure 1 : MDA Hardware Component

3.1.2 The Middleware Stereotype Classes

The middleware stereotype classes are used to
capture any operating system middleware
components. The UML captures the methods,
parameters, and the events of the middleware
component in the same manner as the hardware
components are captured. As an example for the
captured components: the routing components,
sending components, and dissemination
components.

3.2 The TinyOS Component Wiring
Pattern

TinyOS has a group of implemented modules, which
ease accessing common hardware and software

components. Each component has a group of
interfaces which are labelled as inputs or outputs.
TinyOS uses a concept known as wiring to associate
an application module with a particular instance of
an interface. For example in the following NesC
statement,

myApp.RadioControl -> ActiveMessageC
The statement associates the application

component RadioControl to the TinyOS interface
ActiveMessageC. ActiveMessageC is a tinyOS
module which interacts with the link layer of a radio
unit. Therefore, the application component
RadioControl has access to the methods and the
event handles which were developed for the wireless
transmitter.

At a designer level, the concept of tinyOS wiring
resembles an interface specification. This concept
can be captured using a Composite Class, which
captures the internal system objects, the associations
between the system classes, and the collaboration of
the interconnected elements of the modelled system.

The Composite Class supports the creation of a
Class Part. The Class Part is an instance of a class in
another class and is used to capture the interface
between two classes, which are associated to each
other in the Composite Class. When the Class Part is
created, the Class Part name is change based on the
target class name. For example, for a class named
database its instance in a composite class is changed
to itsdatabaseClass (see Figure 2). A Composite
Class is used to capture the instance of node’s
hardware components, software components
instances, and the associations between these
components to the application, which reflect the
component wiring design pattern. Moreover, the
designer has to create multiple Class Parts for the
same class. With this approach, the tinyOS-wiring
concept can be captured using the language
independent UML composite class structure.

3.3 Application Synchronization Pattern

Many WSN applications are similar to embedded
software and therefore are written leveraging event-
based OS or are designed in an event-based form of
design. In the case of TinyOS an application relies
on signalling events either from timers or
middleware or hardware components after finishing
a computation process. After the event is signalled,
the application follows the computation steps coded
in an event handler method.

Figure 2 : RFID Class Diagram

This same approach has been used to capture the
event in UML. The event is triggered either by, a
timer or one of the stereotyped class state diagrams.
The event translates the state chart from the Idle
state to a main state. The main state contains sub-
states which capture the steps of the event handler.
After the state is executed, the system returns to Idle
and waits for the event to be triggered again.

The event based nature of an embedded OS leads
to the possibility of signalling any event at any
instance based on the hardware computation time. In
order to capture this design pattern, the AND state
has been used. The AND state runs the sub-states
concurrently. Therefore, the application state chart is
ready anytime to be signalled by any event captured
in the state machine. Some typical events which are
used in WSNs are signalled by the following
components:
 Timers: Timers generally control the flow of

the entire application. For instance, once the
sensing timer is fired, the application calls
the sensors to read the temperature

 RFID: RFID signals events scanDone once
the tag scanning is done.

 Routing Protocol: The routing protocol
signals an event once the node starts to send
the routing messages to the neighbour nodes.

4 APPLYING THE UML MODEL
PATTERNS TO WSN-RFID CASE
STUDY

This section shows how the proposed WSN UML
patterns are used to capture a software system called
WSN-RFID system. The UML model patterns were
developed in IBM Rational Rhapsody (IBM, 2000-

2009). The system consists of a wireless node
connected to a RFID reader as well as a handheld
device to communicate with the RFID system. The
handheld contains an RFID tag with the handheld’s
node ID programmed into it. The purpose of
outfitting each wireless node with an RFID tag is to
help identify individual WSN nodes that a handheld
device might want to directly communicate with.
This feature is primarily useful when having to
debug or configure a node directly. The RFID add
on also supports validation and authentication of the
handheld device.

4.1 WSN-RFID Hardware and
Middleware Components and Wiring

The hardware stereotype classes are defined for
the components RFID and the LEDs. The stereotype
class has an animated state chart to capture the
behaviour of the interface modules. For instance, the
state diagram for the RFID is shown in Figure 3;
The RFID module offers the connection, tag scan,
sending methods. Those methods are used by the
application to create the connection to the tag
scanner, trigger the scanning process, and sending
the information to a central node.

The middleware modules used in WSN-RFID are
DatabaseC, Connection. AMSenderC.UML classes
are used to capture the behaviour of those classes in
the same manner as mentioned before.

4.2 WSN-RFID Application
Synchronization

The events of the RFID system is captured by using
the model pattern explained in Section 3.3. RFID
Application is captured by using the AND state. All
the states of the application is waiting at the state
Idle. Once the event is signalled, the event causes
the transition from Idle to the event handler. For
instance, once the event receive is signalled, the stat-
chart starts to execute the states in the
ReceiveMessage main state which contains, leds_s2,
checkMessage and followed by TriggerScan process
which triggers the tag scanning process. The scan
process implementation is captured in RFID
hardware component as explained in section 4.1.
Once the scan process is finished, the RFID state-
chart signals an event scanDone, which is captured
in the application state-chart (see Figure 3 and
Figure 4).

Figure 3: RFID Class State diagram

Figure 4 : Application State-Chart

5 CONCLUSION AND FUTURE
WORK

This paper presents a UML approach to
modelling a WSN, using class and state diagrams, in
order to perform power analysis during the design
stage of development. Moreover, the paper
demonstrates the capability of animated state
diagrams to capture the interaction between the
WSN application software, the middleware and the

hardware components. In the future we plan to
extend the use of animated state diagrams to analyse
the power consumption of WSN software and
middleware components.

This paper also presents a set of design patterns
that can assist in the development of a WSN. These
WSN design patterns describe best practices
regarding the specification of WSN interface
components and their behaviour. In the future we
intend to use these design patterns in the
development of additional WSN software.

6 ACKNOWLEDGEMENTS

 The authors would like to thank the Natural
Sciences and Engineering Research Council of
Canada (NSERC) for funding this research.

REFERENCES

Chen, R., Sgroi, M., Lavagno, L., Martin, G.,
Sangiovanni-Vincentelli, A., Rabaey, J., 'Embedded
System Design using UML and Platforms', in E
(ed.), System Specification & Design Languages,
Springer US.

Demaille, A, Peyronnet, AS & Sigoure. 2006,
'Modeling of sensor networks using XRM.', In Proc.
of 2nd Int. Symp. on Leveraging Applications of
Formal Methods, Verification and validation.

IBM 2000-2009, 'Rational Rhapsody User
Guide', IBM.

Zheng, J., Elliott, C., Dersingh, A., R. Liscano,
R., Eklund, M. 2010, 'Design of a Wireless Sensor
Network from an Energy Management Perspective',
Communication Networks and Services Research
Conference (CNSR).

Jacoub, J.K. , Liscano, R., Bradbury, J.S. 2012,
'Assessment of Software Modeling Techniques for
Wireless Sensor Networks: A Survey', Sensors &
Transducers Journal, vol 14-2, pp. 18-46.

Levis, P,GD 2009, TinyOS Programming,
Combridge University Press.

Losilla, F., Vicente-Chicote, C., lvarez, B B.,
Iborra, A., Sánchez, P. 2007, 'Wireless sensor
network application development; An architecture-
centric mde approach', In Software Architecture, vol
4758, pp. 197-194.

Mozumdar, M., Gregoretti, F., Lavagno, L.,
Vanzago, L.,and Olivieri, S. 2008, 'A framework for
modeling, simulation and automatic code generation
of sensor network application', In Proc. of 5th IEEE
Comm. Soc. Conf. on Sensor, Mesh and Ad-Hoc.

