
Using Mutation for the Assessment and Optimization
of Tests and Properties∗

Technical Report 2006-518

Jeremy S. Bradbury

School of Computing, Queen’s University
Kingston, Ontario, Canada
bradbury@cs.queensu.ca

August 2006

Abstract

We are interested in exploring the complementary relationship and tradeoffs between testing and
property-based analysis with respect to bug detection. In this paper we present an empirical approach
to the assessment of testing and property-based analysis tools using metrics to measure the quantity
and efficiency of each technique at finding bugs. We have implemented our approach in an assessment
component that has been constructed to allow for symmetrical comparison and evaluation of tests versus
properties. In addition to assessing test cases and properties we are also interested in using each to
optimize the other as well as to develop hybrid quality assurance approaches. We hypothesize that the
synergies of using testing and property-based analysis in combination will allow for optimizations in test
suites and property sets that are not possible by using both approaches in isolation.

1 Introduction

The goal of the proposed research work is to increase the quality assurance of software systems by exploiting
the synergies that exist between testing and property-based analysis. Our interest in exploring the comple-
mentary relationship between testing and property-based analysis is motivated on the one hand by advances
in the theory and practise of property-based analysis, especially formal analysis, and on the other hand, by a
need for improved quality assurance techniques for industrial code – especially concurrent code. We believe
that the property-based formal analysis tools that are now available offer the potential to substantially aid in
the debugging of industrial concurrent code. Intuitively, the detection of a property or assertion violation,
such as a violation of a method pre-condition, a loop invariant, a class representation invariant, an interface
usage rule, or a temporal property should be more insightful than the failure of a possibly global test case.

A shift in the focus of formal methods from proofs of correctness to debugging and testing has been
advocated by a number of researchers including Rushby [20]. In recent years, tool development in the
formal analysis community has matured and the current generation of tools are automatic, scalable, and only
leave a small semantic gap between the source artifacts used by developers and the model artifacts required
for analysis. The ability to directly analyze source code and the increase in size of systems that can be
analyzed has helped formal analysis become a viable option for software debugging.

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

1



While the majority of software systems currently developed in industry are single-threaded sequential
programs, there is mounting evidence that “applications will increasingly need to be concurrent if they want
to fully exploit CPU throughput gains that have now started becoming available and will continue to material-
ize over the next several years” [21]. The shift from sequential to concurrent systems provides an opportunity
for the application of formal analysis techniques which can often succeed at debugging concurrent systems
while testing in this setting is often insufficient or impractical.

2 Hypothesis
Using a mutation-based approach to testing and property-based analysis will allow for the as-
sessment and comparison of test suites and property sets. Furthermore, the synergies of using
testing and formal analysis in combination will allow for optimizations in test suites and prop-
erty sets that are not possible by using both approaches in isolation. These optimizations can be
integrated efficiently into a modern software quality assurance process and can help to increase
the effectiveness and efficiency of software quality assurance processes.

The term assessment in our hypothesis refers to the statistical evaluation of a test suite or property set
using mutation testing metrics. Mutation testing uses mutation operators to generate faulty versions of the
original program called mutants. If we assume the original program as being correct then a mutant version
that is non-equivalent can be thought of as having a bug. The percentage of non-equivalent mutants detected
(killed) by a test suite or property set is the mutant score. We have chosen to use a mutation metric because a
recent study found that for the programs being studied, mutant faults were a good measure of real faults [2].

The term optimization refers to two activities: generation and reduction. On the one hand, test cases and
properties are generated to allow a given test suite or property set to achieve a better evaluation using the
mutation testing metric. On the other hand, test suites and property sets are reduced when the removal of test
cases and property sets will not reduce the evaluation result using the metric.

3 Research Approach

Our research approach consists of two phases. The first phase is the assessment phase where we empirically
evaluate and explore the synergies between testing and property-based analysis. The second phase is the
optimization phase where we take the results from out empirical assessment and try to use it to enhance the
quality assurance of a given program by improving the test suite and property set as well as develop hybrid
techniques. Figure 1 shows our proposed framework to support our research approach. The current state of
the framework is that the assessment component has been completed but the optimization components have
not. We will now outline the assessment phase and the optimization phase in more detail. Due to space we
will not discuss our experimental setup which was presented in a previous paper [4].

3.1 Assessment Phase

To support the experimental procedure we have developed the assessment component of our framework
such that it features a high-degree of automation and customizability and thus allows for a large number of
experiments to be carried out as efficiently as possible. Our assessment component essentially consists of a
Java application that acts as a wrapper to all of the other tools and scripts used. The framework is generic
enough to allow for the comparison of multiple testing and property-based analysis approaches.

For simplicity we will only explain the assessment framework in the context of comparing one testing
technique (e.g., concurrent testing using a randomized scheduler with ConTest [8]) with one property-based
analysis technique (e.g., static analysis approach using Path Inspector [1]) or formal analysis approach using

2



Property-
Based

Analysis
Testing

TXL Mutant Generators

PropertiesPropertiesTest Cases

Test Suite
Optimization
Component

Property Set
Optimization
Component

PropertiesPropertiesProperties

Assessment
Component

Collection and Display of Results

Original
Source Code

ROR SDL ABS. . .

Mutant
Source Code

Assessment Results
Database

Figure 1: Proposed Assessment and Optimization Framework

Bandera [6]/Bogor [19]). When comparing testing with a property-based analysis the component requires
as input a program (e.g., written in C, C++, Java) and an accompanying test suite and property set. Once
the inputs have been selected, the assessment component implements four main steps in the experimental
procedure:

1. Mutant generation: A built-in set of mutation operators can be selected individually to allow for the
generation of mutant programs to be customized.

2. Property-based Analysis: Our application calls an automatically generated script which allows all of
the property-based analyses to be performed automatically. For our set of properties we first evaluate
each property using the original program to determine the expected outputs. Next we evaluate our
property set for all of the mutant versions of the original program. During property-based analysis all
of the verification results, generated counter-examples, and analysis execution times of each property
with each program are recorded.

3. Testing: Our application calls an automatically generated script which compiles the source code and
executes the testing, recording the output result and execution time for each test case with each pro-
gram.

4. Collection and display of results: We compare the execution and analysis results of the original pro-
gram with the results of executing and analyzing the mutant programs to see if each test case and
property was able to distinguish the mutant programs from the original (see Table 1).

Currently, we have implemented all four steps of the experimental procedure in the assessment com-
ponent and sample screenshots of the component are given in Figure 2. We have made the component
customizable and flexible to support a wide range of experiments using different programs, languages, tools,
and properties. For example, we plan to compare different property-based analysis techniques and compare
different types of properties (e.g. assertions vs. LTL properties). We will discuss the specific experiments
we are currently planning in Section 4.

3



 Assessment Results Reported by the Framework 

Te
st

s Mutant score for each test case/test suite 
Execution cost for each test case/test suite 
Number of test cases that kill each mutant 

Pr
op

er
tie

s Mutant score for each property/property set 
Execution cost for each property/property set 
Number of properties that kill each mutant 
Mutant score for each property pattern type 
Types of mutants killed by each property pattern type 

In
te

gr
at

in
g 

te
st

s 
&

 p
ro

pe
rti

es
 Hybrid set of tests and properties that achieve the 

highest mutant score 
Hybrid set of tests and properties that achieve a certain 
mutant score (e.g. 90%) and 
ohas the lowest execution cost 
ohas the smallest set of tests and properties

Table 1: Types of results collected and reported

Figure 2: Assessment Component Screenshots

4



3.2 Optimization Phase

The optimization phase of our research is currently future work and will not begin until we have collected all
of the empirical results from the assessment phase. The optimization phase will consist of 4 steps and will
be supported by the development of two components; a test suite optimization component and a property set
optimization component:

1. Test case generation: If there exists a mutant that is killed by a property and no test case exists to kill
the mutant then we plan to use a counter-example generated by the formal analysis to develop a test
case that will kill the mutants. Similar approaches to the test case generation are described in [3, 12].

2. Property generation: If there exists a mutant that is killed by possibly several test cases and no prop-
erty exists to kill the mutant the use of dynamic slicing or run-time monitoring of the test cases for
the generation of a property that will kill the mutant could be investigated. Related work includes
Daikon [10] and Terracotta [24], that both use tests as input.

3. Test suite reduction: If one property kills several mutants and several test cases kill the same mutants
then we might be able to generate a test case that kills all of the mutants that can replace multiple test
cases.

4. Property set reduction: On one hand, we will reduce the set of properties by comparing the mutants
killed by each property. If the mutants killed by a given property are all killed by other properties it
could be removed. On the other hand, if one test case kills several mutants and several properties in
our set kill the same mutants then we might be able to generate a single property that kills all of the
mutants that can replace multiple properties.

Our approach to optimization should allow for both the test suite and property set to be enhanced for
use in isolation and in hybrid approaches. Our optimization should provide a more comprehensive test suite
and property set that will allow the testing and property-based analysis to each be more comprehensive and
succinct. Furthermore, if we re-run our assessment on the improved test suite and property set we might also
be able to improve the hybrid approaches identified by our assessment component.

4 Evaluation Plan

To answer the first part of our hypothesis and to evaluate our assessment component we plan to run at least
the following four experiments:

1. Random Testing vs. Random Property-based Static Analysis using Path Inspector
2. Coverage-based Testing vs. Hand Crafted Property-based Static Analysis using Path Inspector
3. Assertion-based Testing vs. Model Checking Assertions
4. Coverage-based Testing vs. Model Checking Assertions vs. Model Checking Temporal Logic Proper-

ties

For Experiments 1 and 2 we will use a set of small C programs created by Siemens [16] that include
a pattern replace program, priority schedulers, lexical analyzers and others. For Experiments 3 and 4 we
will be using concurrent Java programs (e.g., the file system Daisy and a banking example). Based on our
preliminary results (discussed in [4]) we believe that further experimentation will show that in certain cases
property-based analysis can find bugs that testing can not find and vice versa.

To answer the second half of our hypothesis and evaluate our optimization research approach we plan to
investigate optimization techniques using each of our example programs from the assessment phase.

5



5 Related Work

Test suite assessment. The assessment of test suites is a well developed area. Relevant related work includes
code coverage techniques (e.g., branch coverage) as well as the random schedulers often used to assess test
suites for concurrent code [8].

Property set assessment. Unlike test suite assessment, property assessment with respect to source
code does not appear to be well researched. Instead, properties are often assessed with respect to an abstract
model of the code (e.g., finite state machines(FSMs), first-order logic). The use of mutation metrics in formal
analysis primarily occurs at the model level, for example, to assess state-based coverage of FSMs [15]. The
previous uses of mutation in formal analysis therefore differ from the research proposed here in the level
at which the coverage techniques are applied – we propose a source code metric not a modelling language
or FSM metric. Approaches that use mutation of abstract models instead of source code have benefits as a
coverage metric but do not provide an assessment metric that can be easily used to compare property-based
formal analysis to testing.

Test suite optimization Test case generation falls into two distinct categories: code-based generation
and specification- or model-based generation. Our work is most related to specification-based generation
approaches which have used FSMs and model checkers [11, 12], the Z language and type checker [5] and
other specification representations as the basis for generation. An interesting variation on specification-based
generation is operational abstraction using Daikon [14]. Operational abstraction uses the invariants generated
from source code to generate test cases. Test suite reduction or minimization can also be divided into code-
based and specification-based approaches. In [22], Extended FSM (EFSM) dependence analysis is used to
identify and remove redundant tests with respect to a particular requirement.

Property set optimization In the area of property set optimization the most relevant related work is a
property generation approach that uses Daikon [10] and ESC/Java [7]. The approach has two steps: invariant
detection and invariant verification [17]. First, invariants (possible properties) are generated dynamically us-
ing Daikon. Second, the ESC/Java static checker verifies the correctness of the generated invariants statically.
Invariant verification is necessary because the invariants generated dynamically may be unsound. Other in-
variant generation approaches include dynamic analysis approaches like DIDUCE [13] and Carrot [18], static
analysis approaches (e.g., [9]) and the use of the model checker SPIN [23].

6 Expected Contributions

We propose to conduct an empirical study to explore the relationship and synergies between testing and
property-based analysis and the usefulness of property-based static and formal analysis in detecting bugs in
industrial source code. To the best of our knowledge our proposed study is a novel approach since no other
work has used mutation metrics at the source code level as a method of comparing property-based analysis
techniques with testing. Some of the contributions of our study include an experimental assessment compo-
nent and empirical data (expected). In addition to using our assessment component to conduct experiments,
other future work includes extending it to include the ability to optimize test suites and property sets.

7 Acknowledgments

I would like to thank my co-supervisors James R. Cordy and Juergen Dingel for their contributions to this
work.

6



References

[1] P. Anderson. CodeSurfer/Path Inspector. In Proc. of the IEEE Int. Conf. on Software Maintenance
(ICSM’04), page 508, Sept. 2004.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments?
In Proc. of ICSE 2005, pages 402–411, 2005.

[3] D. Beyer, A. J. Chlipala, T. A. Henzinger, et al. Generating tests from counterexamples. In Proc. of
ICSE 2004, pages 326–335, May 2004.

[4] J. S. Bradbury, J. R. Cordy, and J. Dingel. An empirical framework for comparing effectiveness of
testing and property-based formal analysis. In Proc. of Int. Work. on Program Analysis for Software
Tools and Engineering (PASTE 2005), Sept. 2005.

[5] S. Burton, J. Clark, and J. McDermid. Testing, proof and automation. an integrated approach. In Proc.
of the Int. Work. of Automated Program Analysis, Testing and Verification, Jun. 2000.

[6] J. C. Corbett, M. B. Dwyer, J. Hatcliff, et al. Bandera: extracting finite-state models from java source
code. In Proc. of ICSE’00, pages 439–448. ACM Press, 2000.

[7] D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended static checking. Technical
Report 159, Compaq Systems Research Center, Dec. 1998.

[8] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Framework for testing multi-threaded
Java programs. Concurrency and Computation: Practice and Experience, 15(3-5):485–499, 2003.

[9] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior: a general approach
to inferring errors in systems code. ACM SIGOPS Operating Systems Review, 35(5):57–72, 2001.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Trans. on Soft. Eng., 27(2):1–25, Feb. 2001.

[11] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from requirements specifica-
tions. In Proc. of ESEC/FSE-7, pages 146–162, 1999.

[12] G. Hamon, L. de Moura, and J. Rushby. Generating efficient test sets with a model checker. In Proc.
of the Int. Conf. on Soft. Eng. and Formal Methods (SEFM’04), pages 261–270, Sept. 2004.

[13] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly detection. In Proc.
of ICSE 2002, pages 291–301, 2002.

[14] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via operational abstraction. In Proc. of
ICSE 2003, pages 60–71, May 2003.

[15] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. Coverage estimation for symbolic model checking. In
Proc. of the ACM/IEEE Conf. on Design Automation, pages 300–305, 1999.

[16] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of ICSE’94, pages 191–200, May 1994.

[17] J. W. Nimmer and M. D. Ernst. Automatic generation of program specifications. In Proc. of ISSTA
2002, pages 232–242, Jul. 2002.

7



[18] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault localization using potential
invariants. In Proc. of the Int. Work. on Automated and Algorithmic Debugging (AADEBUG’2003),
pages 273–276, Sept. 2003.

[19] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular software model check-
ing framework. In Proc. of ESEC/FSE 2003, pages 267–276, 2003.

[20] J. Rushby. Disappearing formal methods. In Proc. of the High-Assurance Systems Eng. Symp.
(HASE’00), pages 95–96, Nov. 2000.

[21] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s
Journal, 30(3), Mar. 2005.

[22] B. Vaysburg, L. H. Tahat, and B. Korel. Dependence analysis in reduction of requirement based test
suites. In Proc. of ISSTA 2002, pages 107–111, 2002.

[23] M. Vaziri and G. Holzmann. Automatic generation of invariants in SPIN. In Proc. of the Int. SPIN
Work. (SPIN ’98), Nov. 1998.

[24] J. Yang and D. Evans. Dynamically inferring temporal properties. In Proc. of the Int. Work. on Program
Analysis for Software Tools and Engineering (PASTE 2004), Jun. 2004.

8


