
CORE: A Framework for the Automatic
Repair of Concurrency Bugs

by

David Kelk

A thesis submitted in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy

in

Computer Science

University of Ontario Institute of Technology

Supervisors: Dr. Jeremy Bradbury and Dr. Mark Green

January, 2015

Copyright c© David Kelk, January, 2015

Acknowledgements

Dr. Jeremy Bradbury and Dr. Mark Green, my supervisors, were key to seeing this

thesis through to completion. They nurtured and helped develop CORE from an

idea to a working version though a course project and then a published paper at

MUSEPAT’13. Their insights and feedback kept this thesis on course and on time.

Dr. Bradbury’s work on mutation and familiarity with TXL helped me through the

toughest parts of the project - the mutation operators. Dr. Green made suggestions

large and small (spell check the document and put the axis titles on the graph saved

me from a great deal of embarrassment), all of which were important.

My office mates and friends helped me get through graduate school. Kevin Jalbert in-

troduced me to GitHub, Python and many of the other tools used in CORE. Richard

Drake shared my interest in non-mainstream movies.

For transforming my distaste for highschool into a love of universities I will be eter-

nally grateful to Paul Delaney and Dr. Michael Derobertis. Its been a long and

twisted road - but I made it.

Beverly Myatt from CSD was instrumental in helping me navigate the difficulties of

TAing courses. Bethesda Software deserves a special mention for many long, sleepless

nights.

As always, my mother, Karen McLean. She always listened with interest when I

babbled on about my thesis. I couldn’t have done it without you.

i

Abstract

Desktop computers now contain 2, 4 or even 8 processors. To benefit from them

programs must be written to work in parallel. If writing good code is hard, writing

good parallel code is much harder. Parallelization adds process communication and

synchronization to the list of difficulties faced by programmers. It also adds new

kinds of bugs not found in single-threaded code such as deadlocks and data races.

In this thesis we develop the CORE (COncurrent REpair) framework. It automat-

ically fixes deadlocks and data races in parallel Java programs. It uses a search-based

software engineering approach to mutate and evolve the source code. In these mutants

synchronization blocks are added, removed, expanded, shrunk or the synchronization

variable is changed. Each potential fix is model checked or run through a thread

noising tool that forces different thread interleavings to be explored.

Efficiently fixing data races and deadlocks in parallel Java programs is realized

by combining two techniques. First, different forms of static and dynamic analyses

are brought together to constrain the search space. Second, a genetic algorithm

without crossover was implemented that uses both noising and model checking to

determine fitness. These techniques are unified in the CORE framework. Different

kinds of analysis better constrain the search space of the problem. Intelligent use of

noising, model checking and incremental model checking are combined efficiently into

a modern framework that help to increase the overall quality of concurrent software.

ii

This thesis created three projects within the CORE framework, ARC-OPT, CORE-

MC and CORE-IMC. First, static analysis from Chord and dynamic analysis from

ConTest with fitness evaluation by thread noising from ConTest were combined in

ARC-OPT. Second, JPF was integrated into the framework to analyze the source.

Fitness was evaluated by JPF and ConTest. This version was called CORE-MC.

Third, function header scanning for in-scope locks and incremental modelling sup-

port was added to CORE-MC to create CORE-IMC. Each project builds upon the

previous and each was evaluated against a suite of test programs.

iii

Co-Authorship

ARC (Automatic Repair of Concurrent programs) began as a course project developed

by the author and Kevin Jalbert. It cumulated in a paper co-authored by the author,

Kevin Jalbert and our supervisor, Jeremy Bradbury and published in the proceedings

of the 1st International Conference on Multicore Software Engineering, Performance,

and Tools (MUSEPAT 2013) [43]. This paper forms the basis of Chapter 4.

ARC was prior work and is not a contribution of this thesis. Once this thesis was

decided on, two months of effort was put into improving and optimizing the code to

produce ARC-OPT and the CORE framework. What distinguishes ARC-OPT was

the addition of static analysis of the code to be fixed. It is the sole work of the author

and the first contribution of this thesis.

Using search-based software engineering to enhance model checking applications

was advocated for in a paper co-authored with my supervisors Jeremy Bradbury and

Mark Green. It was published in the proceedings of the 1st International Workshop on

Combining Modelling and Search-Based Software Engineering (CMSBSE 2013) [11].

iv

Contents

Acknowledgements i

Abstract ii

Co-Authorship iv

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Summary . 1
1.2 Thesis Statement and Scope of Research 6

1.2.1 Design Decisions and Limitations 8
1.3 Motivation . 9
1.4 Contribution . 11
1.5 Organization of Thesis . 12

2 Background 13
2.1 Introduction . 13
2.2 Heuristic Search: Evolutionary Programming and Genetic Algorithms 14
2.3 Search-Based Software Engineering 19
2.4 Automatic Single-Threaded Program Repair 21
2.5 Concurrency . 22

2.5.1 Java Synchronization . 24
2.6 Deadlocks, Data Races and Synchronization Blocks 26
2.7 Existing Work on Finding, Suppressing and Repairing Deadlocks and

Data Races . 27
2.8 Modelling . 29
2.9 Model Checking . 31

2.9.1 Java PathFinder . 35
2.9.2 Existing Work on Java Pathfinder 37

v

2.9.3 Incremental Model Checking 39

3 Literature Survey 44
3.1 Introduction . 44
3.2 Literature Survey . 44

3.2.1 Falcon: Fault Localization in Concurrent Programs 44
3.2.2 AtomAid: Detecting and Surviving Atomicity Violations . . . 45
3.2.3 AtomRace: Data Race and Atomicity Violation Detector and

Healer . 46
3.2.4 Bypassing Races in Live Applications with Execution Filters . 48
3.2.5 Kivati: Fast Detection and Prevention of Atomicity Violations 49
3.2.6 ColorSafe: Architectural Support for Debugging and Dynami-

cally Avoiding Multi-variable Atomicity Violations 49
3.2.7 Deterministic Dynamic Deadlock Detection and Recovery . . . 50
3.2.8 Automated Atomicity-violation Fixing 51
3.2.9 Axis: Automatically Fixing Atomicity Violations Through Solv-

ing Control Constraints . 53
3.2.10 Automatic Repair for Multi-threaded Program with Deadlock-

/Livelock using Maximum Satisfiability 53
3.2.11 Fully automatic and precise detection of thread safety violations 55
3.2.12 Grail: context-aware fixing of concurrency bugs 55

4 CORE Framework 57
4.1 Introduction . 57
4.2 The CORE Framework . 57

4.2.1 ConTest . 59
4.2.2 Genetic Algorithm Details . 60
4.2.3 Setup: Time-out Generation and Search Space Pruning 61
4.2.4 Generate Mutants . 61
4.2.5 Mutate Individuals . 62
4.2.6 Evaluate Individuals . 64
4.2.7 Check Ending Condition . 64
4.2.8 Replace Weakest Individuals 64
4.2.9 Recalculate Operator Weighting 65
4.2.10 Example . 65

4.3 COREs Search Strategy . 68
4.3.1 Does Heuristic Search Make a Difference? 69
4.3.2 CORE’s Search Strategy . 73

4.4 Synchronizing Run() . 73
4.5 Evaluating CORE . 76

vi

5 ARC and ARC-OPT 88
5.1 Introduction . 88
5.2 ARC and ARC-OPT . 88

5.2.1 Summary . 89
5.2.2 Limitations . 90

5.3 Software Engineering Optimizations 91
5.3.1 Static Analysis . 93

5.4 Evaluating ARC . 95

6 CORE-MC 97
6.1 Introduction . 97
6.2 CORE-MC . 97

6.2.1 Adding JPF to CORE . 98
6.3 Software Engineering Optimizations 100
6.4 Evaluation . 101
6.5 CORE-MC Variable Study . 102

7 CORE-IMC 105
7.1 Introduction . 105
7.2 Software Engineering Optimizations 105
7.3 Scanning Function Headers . 106
7.4 CORE-IMC . 107
7.5 Does Incremental Model Checking Actually Generate Any Saving? . . 108

7.5.1 Accounts Test . 109
7.5.2 Population 2 Study . 110

7.6 Evaluation . 112

8 Conclusions and Future Work 114
8.1 Introduction . 114
8.2 Conclusions . 114
8.3 Future Work . 117

8.3.1 Software Engineering . 118
8.3.2 Theoretical . 118

8.4 Generalizations . 119

Appendices 121

A Source Listings for Test Programs 122
A.1 Source Listings . 122

A.1.1 Account . 122
A.1.2 Account Sub-Type . 123
A.1.3 Accounts . 124
A.1.4 Airline . 125

vii

A.1.5 Bubblesort2 . 127
A.1.6 Deadlock . 128
A.1.7 Lottery . 129
A.1.8 Pingpong . 130
A.1.9 Linked List . 131
A.1.10 Readers-Writers . 131
A.1.11 Buffer . 132
A.1.12 StringBuffer . 132
A.1.13 Cache4j . 133
A.1.14 Travelling Salesperson (TSP) 133

Bibliography 143

viii

List of Figures

2.1 In Java, synchronized access to an object’s methods is enforced by
adding the synchronized keyword to the method header. 25

2.2 In Java, lines can be locked by synchronizing on any non-primitive
variable. 25

2.3 Example B machine that adds two integers and returns the result. Note
that Num1 must be between 1 and 100 inclusive. 43

4.1 Instances of the CORE framework. ARC is prior work. ARC-OPT,
CORE-MC and CORE-IMC are described and evaluated in this thesis. 58

4.2 High-level overview of the two phases of operation of the CORE frame-
work. 58

4.3 The CORE framework uses an Evolutionary Strategy to fix data races
and deadlocks in Java programs. 59

4.4 There is no relationship between the generation of a fix and the size of
the programs in lines of code in [50]. 70

4.5 There is no relationship between the generation of a fix and the critical
path size of the programs in [50]. 71

4.6 In the Account program, the transfer method can lose updates because
of a lack of synchronization on the ac variable. 74

4.7 In the Account program, synchronizing ac in the transfer method fixes
the data race. 74

4.8 In the Airline program, all of the parallel code is in the run() method.
All of the variables used in run() are primitive types. 75

4.9 In the Lottery program the methods generate, present and record race
on the class level variable randomNumber. 87

6.1 Java allows locking on objects that haven’t been created yet. JPF flags
this as an error. 99

7.1 In CORE-INC, mutations were created that contained nested synchro-
nization on the same variable. 106

A.1 In the Account program, the Transfer method can lose updates because
of a lack of synchronization on the ac variable. 123

ix

A.2 In the Account program, synchronizing ac in the Transfer method fixes
the data race. 123

A.3 In Account Sub-Type, the PersonalAccount.T ransfer method lost
updates because of a lack of synchronization on the ac variable. Once
that was fixed, the program deadlocked on the transfer method calls
in run. 124

A.4 In Account Sub-Type, CORE fixed the data race in PersonalAccount.
Transfer but had trouble fixing the deadlock in run(). 125

A.5 In the Accounts program, threads race on the Service method. 126
A.6 CORE’s fix for the Accounts program. 127
A.7 In the Airline program, there is a race on the StopSales variable be-

tween the main body of code and the run method. 128
A.8 CORE fix for the Airline program. 129
A.9 In Bubblesort2 the threads can race on the array variable in the run

and swpArray methods. 130
A.10 CORE fix for the Bubblesort2 program. 131
A.11 The Deadlock program simulates the working physicist problem by

locking files. Each thread locks one file and then deadlocks while trying
to lock the other file. 135

A.12 CORE’s fix for the Deadlock program. 136
A.13 In Lottery the methods generate, present and record race on the class

level variable randomNumber. 137
A.14 CORE’s fix for the Lottery program. 138
A.15 All threads call the pingPong method containing the class level vari-

able pingPongP layer. Calling get while it is null generates aNullPointer

Exception. 138
A.16 CORE’s fix for the Pingpong program. 139
A.17 In the concurrent linked list implementation, a race occurs within the

insert method. 139
A.18 CORE fixes the data race in the insert method by synchronizing it. . 139
A.19 In the Readers-Writers program, a data race occurs where a reader is

active when a writer is writing. This can cause a java.lang.

IllegalMonitorStateException to be thrown from within the beforeRead

method. 140
A.20 CORE fixed the exception and race by synchronizing the beforeRead

method. 140
A.21 The enq method in Buffer has a notifyvsnotifyall bug. 141
A.22 In StringBuffer, the append and delete methods can interfere and cause

a data race on the count variable. In general StringBuffer is missing
statment level locking. 141

A.23 In cache4j, two threads can interfere and cause a crash on the sleep

variable. 142

x

List of Tables

1.1 As the programs become larger and the bugs harder to find, the running
time of ARC grows unacceptably long. 2

2.1 High level view of Evolutionary Programming. 14
2.2 N th generation of the evolution of black hole universes in Cosmological

Natural Selection (CNS) by evolutionary programming (EP). mp and
me are the mass of the proton and electron. Fem and Fw are the relative
strengths of the electromagnetic and weak forces. 16

2.3 High level view of a genetic algorithm. 17
2.4 Crossover applied to the first two black hole universes from Table 2.2.

They have merged and replaced black hole 1. Black hole 2 was removed
in the crossover step. 17

2.5 The algorithm for a physicist to write on the blackboard is shown on
the left. Two physicists working at the same blackboard end up in
deadlock on the right. 26

2.6 Calculating the size of a state space. 33
2.7 Exploring the interleavings of the working physicists. In the left col-

umn, ordering is enforced so no deadlocks occur. No enforcement ex-
ists for the middle or right columns. Luckily the center column doesn’t
deadlock, but the right column does. 34

2.8 Two examples of interleavings with partial order reduction. Ordering
is enforced in the left column. The lack of ordering in the right column
causes a deadlock. 35

2.9 Exploring interleavings with partial order reduction leading to poten-
tial data races. As in previous cases, ordering in the left column pre-
vents a data race. There is no ordering in the right column, leading to
a data race. ‘Leaves’ is included for understandability. 36

2.10 Examples of a current state and transitions to a next state for working
physicists. In the first case, when the physicist is only holding the
chalk, she cannot think or put it down, so there is no change in state. 40

2.11 In incremental modelling, a state seen on a previous run doesn’t need
to be evaluated again. Its child states must still be checked. Every
entry of false in the table is effort saved. 42

xi

4.1 Set of mutation operators used by the CORE framework. 62
4.2 Using the Add Synchronization Around a Method (ASM) operator

places a synchronization block around all of the code in the method. . 62
4.3 The EXpand Synchronization After the block (EXSA) operator ex-

tends the synchronization block down to encompass the next line of
code. 63

4.4 The Change Synchronization Order (CSO) operator flips the order of
the locking variables for two nested synchronization blocks. 63

4.5 Evolving a fix for the working physicists deadlock in CORE. The orig-
inal code is in the left column. A mutant that doesn’t improve fitness
is in the middle column. By expanding the synchronized region up one
line a fix is found in the right column. 66

4.6 Evolving optimizations for the deadlock fix found by CORE. The fix
found in the left column is to synchronize all of the code. It works but
serializes the code. An attempted optimization in the middle column
reintroduces the deadlock, so it is rejected. In the right column the
synchronize block is shrunk by two lines, leading to a better (but not
optimal) solution. 67

4.7 Average generation a fix was found for the test programs from the
papers written on GenProg. 69

4.8 The set of programs in the benchmark used to evaluate CORE. . . . 77
4.9 Class, method and variable counts of the benchmark programs. 78
4.10 Concurrent properties of the benchmark programs. 79
4.11 The set of parameters that CORE uses along with their descriptions

and values. 80

5.1 Number of classes, methods and variables targeted by ARC-OPT after
static analysis. The variables column is the number of non-primitive
variables found. 94

5.2 Summary of the results of running the test programs through ARC-
OPT 30 times. 95

5.3 Comparison of ARC and ARC-OPTs performances. 96

6.1 Summary of the results of running the test programs through CORE-
MC 30 times. 101

6.2 Comparison of the average time required to find fixes for the test pro-
grams for ARC-OPT and CORE-MC. 102

6.3 Variable study: JPF search time. Values studied were (90s, 60s, 30s,
20s, 10s). CORE-MC used a default search time of 30 seconds. 102

6.4 Variable study: GA¬C population size. Values studied were (50, 30,
20, 10, 5). CORE-MC used a default population of 30. 103

6.5 Variable study: JPF search depth. Values studied were (200, 150, 100,
50, 25). CORE-MC used a default search depth of 50. 103

xii

6.6 Variable study: GA¬C generations. Values studied were (30, 20, 10,
5, 3). CORE-MC used a default 30 generations. 104

6.7 Comparison of optimized variables vs non-optimized for CORE-MC. . 104

7.1 Number of full model checking (MC) and incremental model checking
runs per strategy for population N and generations G. 108

7.2 Hand-seeded mutations for the Accounts program, for the proof of
concept incremental run. 109

7.3 Results of the proof of concept incremental run on the Accounts pro-
gram. Savings is calculated from the 2nd and 4thcolumns. 109

7.4 Results from ARC-OPT for the population 2 study. 111
7.5 Results from CORE-MC for the population 2 study. 111
7.6 Results from CORE-IMC for the population 2 study. 112
7.7 Summary of the results of running the programs through CORE-IMC

30 times. 112
7.8 Comparison of CORE-IMC and CORE-MC. 113

8.1 Comparison of ARC’s and ARC-OPT’s performances on the test suite. 116
8.2 Comparison of ARC-OPT and CORE-MC on the test suite. 116
8.3 Comparison of CORE-IMC and CORE-MC on the test suite. 117

xiii

Chapter 1

Introduction

1.1 Summary

Over the last five years rapid progress has been made in the field of automatically

fixing bugs in sequential software programs [4, 5, 7, 29, 34, 49–51, 63, 74, 87–89, 91].

Equal progress hasn’t been made on the automatic repair of deadlocks and data races

in concurrent software programs. Numerous techniques exist to find concurrency

bugs [38, 39, 42, 60–62, 64–66, 68, 70, 73, 85] and techniques exist to try and suppress

them [12,14,45,53,58,59,83,86,92]. However, only a few try to fix them [8,12,40,41,

54, 56, 57] and when they do, they have limitations. Some [8, 12] are limited to finite

state machines like circuit design and communications protocols. Most [40,41,56,57]

fix only a subset of concurrency problems such as data races and atomicity violations.

Only one [54] attempts to fix deadlocks. No techniques exist to automatically and

completely fix the broad class of all kinds of data races and deadlocks in a consistently

reliable way.

Automatic Repair of Concurrency Bugs (ARC) [43] is a program developed by

Dr. Jeremy Bradbury, Kevin Jalbert and the author. It uses a genetic algorithm [90]

1

Table 1.1: As the programs become larger and the bugs harder to find, the running
time of ARC grows unacceptably long.

Scenario Pop. Gen.
ConTest
Runs

ConTest
Run
Time

Total Time

Easy to find bug in a toy
program

20 30 3 3 sec. 90 min.

Moderately hard to find bug
in a moderate size program

30 50 10 1 min. 10.4 days

Hard to find bug in a toy
program

30 50 1500 2 sec. 52 days

without crossover, GA¬C, to evolve fixes for deadlocks and data races in concurrent

Java programs. Source code is mutated by adding, removing, growing, shrinking and

reordering Java’s synchronize() blocks. No other code structures are affected. State

space explosion is constrained by only targeting the concurrently used classes and

variables found by the ConTest [45] thread noising tool. ARC uses ConTest’s thread

interleaving randomization to repeatedly explore different thread interleavings and

assign a fitness score to every mutant program. ConTest is run a set number of times

on each mutant program to explore the concurrent state space. Choosing the number

of ConTest runs requires some experience as it must be large enough to regularly and

reliably find the data race or deadlock.

ARC’s running time is proportional to the population P of the GA¬C, times

the number of generations N, times the number of ConTest runs per member per

generation CR, times the running time of ConTest CT: RunT ime = O(P × N ×

CR× CT). Table 1.1 shows the running time of ARC for three different scenarios1.

The running time of ConTest is the largest contributor to the running time of ARC.

All of the additional work ARC does (copying source, compiling source, calculating

1It takes 4 days to run the unit tests for Python 3.

2

fitness, etc) is at most the same order of magnitude as the running time of ConTest,

but usually of a smaller magnitude. Consider that code is copied once, compiled once

and then is run through ConTest CN times for every member for every generation.

Values in Table 1.1 reflect the time needed for ARC to run, using all generations.

When the running time reaches into days2, one must consider the trade-offs involved

in parameter selection very carefully.

ARC has weaknesses that need to be addressed. First, the search space needs to

be better constrained. The more information we have about the classes, methods and

variables used concurrently leads to smaller search spaces and faster running times.

Second, the incomplete exploration of all possible thread interleavings by running

ConTest introduces uncertainty. If the buggy interleaving wasn’t run, a bug escapes

detection. The StringBuffer test program is an example in which ConTest didn’t find

the data race after noising the program 1,000 times. If ARC doesn’t find a race or

deadlock it declares the program being noised as correct and then ends. ARC declares

the buggy program ‘fixed’. Can we tolerate ARC missing a data race or deadlock in

a ‘fixed’ program? Even if every proposed fix is rigorously tested3, how do we know

it is error free?

This thesis walks the threefold path to address these problems. ARC [43] was a

research prototype. It worked, but it was slow and inelegant. The first excursion fixed

the deficiencies in ARC4 and added the static analysis of the program being fixed by

Chord, leading to the first contribution, optimized ARC (ARC-OPT). At the same

2ARC usually breaks on the ConTest noising when the number of ConTest runs, CR, goes above
approx. 1000 per member.

3Every proposed solution is executed by ConTest V ∗ CN more times, to try and validate the
proposed fix.

4ARC is as it appears in [43]. It is joint work completed by the author and Kevin Jalbert under
Dr. Bradburys supervision. The check-in on May 7, 2012 in the GitHub repository is the ARC
referenced herein. It is also the final check-in for ARC. Development on ARC-OPT and the CORE
framework began after this date.

3

time ARC-OPT was refactored to more readily interface with other programs, was

cleaned up, fixed and optimized5.

In the second stage, ARC-OPT was leveraged and evolved into CORE-MC (Model

Checker). ConTest was replaced by the Java Pathfinder (JPF) [84] model checker [22].

Model checking is used to determine if a proposed fix truly eliminates the dead-

locks and data races. Exhaustive model-checking of proposed solutions generated by

CORE-MC provides certainty about results; a data race exists, a deadlock exists, or

there are no data races and no deadlocks. At the same time, JPF provides information

to better constrain the search space by returning the classes, methods and variables

it found were used concurrently. After every execution of JPF, the output generated

is scanned for any new classes, methods and variables found. They are added to the

lists maintained by CORE-MC.

Initially JPF was to replace ConTest as the evaluation engine of each mutant

program. Model checking is slow and had a devastating effect on the speed of CORE-

MC. The state space explosion problem was also an issue. JPF would often crash with

an ‘out of memory’ error or simply fail because the target program had more than

128 threads6. A hybrid approach was adopted in which JPF was run for a limited

time and to a limited search depth. If JPF found a bug it assigned fitness and moved

on. If it failed for any reason, CORE-MC fell back on ConTest to noise the program.

If JPF found no bugs to the given depth, the mutant could have potentially fixed the

bug(s). ConTest was again called upon to validate it.

In the third stage, incremental modelling techniques [48,81] were added to CORE-

MC to create CORE-IMC. In incremental modelling the results of a model-checking

run are recorded and used to speed up future runs. That is, the search tree from the

5When completed, the average running time of the test suite was reduced from 34 minutes in
ARC to 13 minutes in ARC-OPT.

6The version of JPF used in this thesis has a hard-coded limit of 128 threads.

4

previous model checking run is loaded from disk and used by the model-checker to

speed up the current run. A more in-depth description can be found in Section 2.9.3.

At the same time, the scanning of function headers found to be used concurrently was

added to CORE-IMC. We found that the analysis tools would identify a method used

concurrently but would not identify any in-scope variables for that method that were

usable as locks in the synchronize statements. Function headers were scanned for all

non-primitive variables. These were added to the lists maintained by CORE-IMC as

in-scope and valid lock candidates.

Note that the techniques added are cumulative, with ARC coming first and CORE-

IMC last. At each stage, the resulting software (ARC, ARC-OPT, CORE-MC and

CORE-IMC) was evaluated against a test suite and compared to the other stages in

the thesis.

Similar to GenProg, the CORE framework is a pragmatic software-engineering and

heuristic search based approach to fixing data races and deadlocks, not a theoretical

one. Genetic algorithms are often used when deterministic algorithms aren’t known -

as in this case. There are no deterministic algorithms that fix data races and deadlocks

in concurrent Java programs. CORE isn’t guaranteed to find a fix if one exists and

it isn’t guaranteed to find the best fix. When genetic algorithms are used, a fix that

is good enough is better than no fix at all.

CORE can introduce data races or deadlocks into parts of the code not protected

by test cases. Conversely, CORE can fix unknown data races and deadlocks in code

covered by test cases. This occurred in the AccountSubType test program (Sec-

tion 4.5). In practice, CORE found fixes for all fixable test programs and usually

found them in the first generation. See Section 4.3.1 for details. To the best of

our knowledge, the fixes found by the CORE framework didn’t introduce any new

deadlocks or data races.

5

Note that initially the author believed the major contribution of this thesis was

the genetic algorithm. That is, the part of the framework that evaluates every mutant

program and assigns fitness. I no longer believe this to be the case. Instead, the most

important part of the framework is the combination of the different analyses that

constrain the search space. This has a major impact on determining the difficulty of

getting from ‘here’ (a buggy program) to ‘there’ (a fixed program.)

The rest of this chapter is structured as follows. Section 1.2 states the thesis,

defines terms and outlines the goals of the work. It is followed by the limitations

and key assumptions in section 1.2.1. Motivation is described in section 1.3 and is

followed by the thesis contribution in 1.4. Finally, the organization of the rest of this

thesis is described in section1.5.

1.2 Thesis Statement and Scope of Research

Thesis statement: Efficiently fixing data races and deadlocks in parallel Java programs

is realized by combining two techniques. First, different forms of static and dynamic

analyses are used to constrain the search space. Second, a genetic algorithm without

crossover is implemented that uses both noising and model checking to determine

fitness. These techniques are brought together in the CORE framework. Different

kinds of analysis better constrain the search space of the problem. Intelligent use

of noising, model checking and incremental model checking are combined efficiently

into a modern framework that helps to increase the overall quality of concurrent Java

software.

Recall that ARC uses ConTest to both noise the program to be fixed and to find

classes, methods and variables used concurrently. This thesis created three projects

6

within the CORE framework. First, the bugs in ARC were fixed and ARC was op-

timized. It was then augmented with static analysis from Chord to create optimized

ARC, ARC-OPT. Second, we added JPF to both model check mutant programs and

to find additional classes, methods and variables used concurrently. This portion was

called the CORE model checker, CORE-MC. Third, we added incremental modelling

support and the scanning of function headers for lockable variables to CORE-MC,

creating CORE incremental model checker, CORE-IMC. The addition of different

analysis tools and techniques (ConTest, Chord, JPF and function header scanning)

in each step constrain the search space. Incremental modelling is faster than fully

model checking each candidate solution in every generation. Finally, an empirical

evaluation was performed at every stage.

A formal software analysis is “A mathematically well-founded automated tech-

nique for reasoning about the semantics of software with respect to a precise specifi-

cation of intended behaviour for which the sources of unsoundness are defined [22].”

Model checking “Takes as input a state transition system model M representing

a system S’s behaviour, and a property P to be checked against the system, and

then exhaustively explores all paths through M while checking that P is true at each

reachable state. In concurrent systems, this exhaustive exploration of paths considers

all possible interleavings of concurrent transitions [22].”

Bugs in software are errors causing it to behave incorrectly. They can come from

incorrect or incomplete specifications, design or coding.

Bug repair is the correction of a software bug to bring the program into agreement

with its expected output, design and/or specifications.

Genetic Algorithms are part of the family of nature-inspired, evolutionary, heuris-

tic search techniques. They are population based and contain mutation and crossover.

7

A fitness function provides a score for each proposed solution. More fit (higher scor-

ing) solutions are preferentially passed on to the next generation. This process contin-

ues until a solution is found, a certain number of generations pass or a predetermined

number of fitness evaluations is exhausted.

An Evolutionary fitness function determines the value of a proposed solution to the

problem at hand. Generally high absolute values indicate better (more fit) solutions

which are preferentially passed into the next generation of the evolutionary search.

Concurrent processing occurs when many calculations are carried out simultane-

ously on different processors in a computer. Any problem that can be broken down

into smaller, independent problems can be parallelized. Each sub-problem is solved

independently on different processors at the same time.

A Deadlock occurs within program(s) when a proces, A, has to wait for a re-

source held by process B, where B is waiting for a resource held by C. If none of

these processes can advance, they are in a deadlock. A classic example is the dining

philosophers problem7.

Data races occur when two or more threads can nondeterministically change the

value of a variable with no read of that variable between them. The threads of control

race to change the variable - leading to unpredictable or incorrect behaviour.

Incremental computation is “basically an attempt to avoid repeating lengthy anal-

yses of a system specification after the specification has undergone some relatively

minor change.” [79].

1.2.1 Design Decisions and Limitations

1. Existing tools and code were used: Ant, Java, JUnit, Python, ConTest, Chord,

Java PathFinder, etc.

7Dijkstra, Edsger W.: http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF

8

2. Target platforms are the Linux and Mac implementations of Unix. Cross-

platform support (to Windows) isn’t guaranteed due to the limitations of Python.

3. Programs evaluated must be written in Java, must be concurrent and be invo-

cable by the Ant build system.

4. An existing model checker (Java Pathfinder) is used. Preference is given to Java

model checkers with a good API.

5. Programs chosen for evaluation must at a minimum noise (with ConTest) in a

reasonable amount of time on a reasonable desktop computer. Being model-

checkable (with JPF) is nice, but not required.

6. CORE may take hours or possibly days to run, especially if it exhausts all

generations without finding a fix.

7. Programs may be fixed within the first generation of the GA¬C. This is a

common problem for all heuristic bug fixing techniques and is elaborated on in

Section 4.3.

1.3 Motivation

The main motivation for this research is to improve the quality of concurrent Java

programs. In general, we argue that quality of automatic data race and deadlock

fixing is increased by both constraining the search space of potential fixes and by

creating an efficient mutant evaluation engine. Search spaces are constrained by

using a combination of dynamic analysis (ConTest in ARC), static analysis (Chord

in ARC-OPT), model checking (JPF in CORE-MC) and function header scanning

(in CORE-IMC). Thread randomization/noising is introduced in ARC and refined in

9

ARC-OPT. Model checking of the mutant programs is added in CORE-MC and is

augmented with incremental modeling in CORE-IMC.

In every generation the framework applies a single mutation to each member of

its population. Mutations by definition are small changes. Incremental modelling

techniques reuse the results of modelling runs to speed further runs. These two

techniques share a natural synergy. In a population based heuristic search, using the

results of model checking of the previous generation should considerably speed up

model checking of the current generation. Time saved compared to many full model

checking invocations could be substantial. It is possible that for any execution of

CORE-IMC, only one full model checking run will be necessary. If information about

the models is updated each generation, all other model checker invocations should be

incremental.

A secondary motivation was to make CORE useful and usable by practitioners.

Many discussions have occurred on how to make tools useful for real world software

developers. CORE should be as automated as possible. It should help with the day

to day problems encountered by practitioners. It should be part of a development

environment familiar to practitioners and have a test suite of programs for repeatable

evaluations.

In its current form the framework is almost self-contained and portable. Only

installations of Java and Python are required. CORE’s source code is always available

as it is written in Python - an interpreted language. In its current form the framework

requires some effort to set up a concurrent Java program to be fixed. One must be

able to write a driver program to run the JUnit test cases that demonstrate the

bug(s). The Ant build system and JPF must be understood well enough to write a

compile script in Ant for the program and create a configuration file for JPF for the

10

program8.

1.4 Contribution

There are no frameworks that fix data races and deadlocks in concurrent programs

in a consistently reliable way. ARC does so for Java programs. Its main limitations

are the time it takes and the uncertainty inherent in using ConTest.

The novel contribution of this thesis is the combination of analyses that constrain

the search space of potential mutant programs and the development of an efficient

genetic algorithm engine to evaluate these mutant programs.

Search space constraint is managed by integrating these methods.

1. Dynamic analysis from ConTest

2. Static analysis from Chord

3. Model checking from Java Pathfinder

4. Scanning of concurrently used function headers for in-scope lock variables

An efficient mutation engine is realised by combining the following methods.

1. Noising from the ConTest tool

2. Model checking from Java Pathfinder

3. Augmenting Java Pathfinder with incremental model checking

These methods are realised in the CORE framework in ARC-OPT, CORE-MC

and CORE-IMC. Using model checking and incremental model checking to support

the repair of parallel Java programs with data races and deadlocks is novel. Using

them in a mutation powered, population based heuristic search is also novel.

8Much of this can be done by studying and modifying existing examples.

11

1.5 Organization of Thesis

The rest of this thesis is structured as follows. Chapter 2 introduces the concepts

used in this thesis: heuristic search, model checking and incremental modelling being

the most important. Chapter 4 describes the CORE framework for the bug fixing

software and the evaluations done on it. The following chapters describe the specific

implementations: ARC and ARC-OPT in Chapter 5, CORE-MC in 6 and CORE-

IMC in 7. Conclusions and future work are presented in Chapter 8.

12

Chapter 2

Background

2.1 Introduction

This chapter reviews the background material required for this thesis. Heuristic

search (Section 2.2) is described, with an emphasis on the search techniques used

by CORE. A brief introduction to Search-based Software Engineering (Section 2.3)

follows. Rapid progress has been made on repairing single threaded programs (Sec-

tion 2.4). The same cannot be said for concurrent repair. Concurrency (Section 2.6)

introduces complications like deadlocks and data races. Existing techniques that

attempt to find, suppress and repair concurrent bugs (Section 2.7) are surveyed.

CORE uses formal modelling techniques (Section 2.8), specifically model checking

(Section 2.9) to determine the correctness of a candidate program. JPF (Section 2.9.1)

was selected because of its maturity and the existing body of work on it (Section 2.9.2).

Finally, incremental modelling (Section 2.9.3) is described, with an emphasis on the

approach used in CORE.

13

Table 2.1: High level view of Evolutionary Programming.

Evolutionary Programming

initialize population with random genetic material
generation = 0
while solution not found and generations remain

evaluate fitness of each member of the population
mutate population
assemble next generation population from parents
and children
evaluate stopping condition
generation = generation + 1

end while
output fittest member of population

2.2 Heuristic Search: Evolutionary Programming

and Genetic Algorithms

“Heuristic search is what you use when you don’t know what

you’re doing1.”

Heuristic search is a family of search techniques modelled after biological evolution.

One of the earliest techniques was Evolutionary Programming (EP)2. An overview of

the algorithm is provided in Table 2.1. It is population based, where every member

is considered to be a separate species. Member 1 is a cat, member 2 is a cactus and

so-on.

EP is mutation driven. Mutations are changes to a member of the population.

In the biological world they can be caused by changes in DNA replication or from

radiation. This is represented in digital evolutionary strategies by randomly changing

the values of variables by a normally distributed (Gaussian) amount. The amount of

change is also low as EP assumes the children are similar to their parents. Mutation

1Dr. Mark Green, personal conversation.
2http://www.aip.de/~ast/EvolCompFAQ/Q1_2.htm, retrieved 21 Oct. 2013.

14

introduces random changes into a member of the population that might bring it closer

to a good solution, do nothing, or move it farther away.

In the mutation step, the parent is replicated 1 or more times and the mutations

are applied to each. EP has no fixed rules for the number of children produced by

each parent. After this the parents and children compete to move into the next

generation. Here as well, EP has no rules for the size of the population. It can vary

from generation to generation. Figure 2.1 gives an overview of EP.

Here is an example of EP. A common question asked by any number of people

is, ‘Why is our universe the way it is?’ One attempt at an answer is the theory

of Cosmological Natural Selection (CNS) [75–77]. It suggests that the purpose of

universes is to create black holes, each of which contains a child universe with its

own black holes. In this scenario, universes are the members of the population. Their

fitness is determined by the number of black holes (offspring universes) they produce3.

CNS requires that the changes in the physical constants from universe to universe are

small - like normally distributed mutations.

As trips through black holes are one-way and non-returnable, we can consider all

child black holes to be separate species4. In CNS the number of universes explodes

exponentially. EP models this well with its flexible child and population counts.

The fitness of a universe is determined by how many black holes it produces.

Assuming that the laws of physics are the same across all realities, the parameters

that can vary include the masses of particles (proton, neutron, electron and neutrino,

among others) and the strengths of fundamental forces (gravity, electromagnetism,

nuclear strong and nuclear weak). Table 2.2 gives an example of what the N th gen-

eration of black hole universes might look like after the evaluation and mutation

3Universes that are good at making black holes are also hospitable to human life.
4It isn’t possible for anything to travel from one sibling black hole to another to compare their

properties as this would require exiting an event horizon.

15

Table 2.2: N th generation of the evolution of black hole universes in Cosmological
Natural Selection (CNS) by evolutionary programming (EP). mp and me are the mass
of the proton and electron. Fem and Fw are the relative strengths of the electromag-
netic and weak forces.

Black
Hole #

mp

×10−27

kg

me

×10−31

kg

F em

1
Fw

×10−11
Score

Evaluated
1 1.67 9.11 1 1 600
2 1.72 9.21 1.003 1.04 430
3 1.6 9.16 1.0001 0.89 170

Mutated
1 1.67 9.31 1 1
2 1.72 9.21 1.003 1.08
3 1.6 9.16 0.9999 0.89

steps. In the three universes, the mass of the electron, strength of the weak force

and strong force respectively are mutated by small amounts. For the purposes of this

example, the optimal black-hole producing realities receive a score of 1000 points. As

generations and ending conditions are not well defined, they are omitted.

Genetic algorithms (GA) [10,90] are another commonly used heuristic search tech-

nique. Like evolutionary programming, they are population based and use mutation.

Unlike EP, all of the members of the population are the same species and crossover is

used. In EP, mutation rates are high as they are the only drivers of change. In GAs,

mutation rates are low due to the use of crossover. Further, in GAs, mutation sizes

are not normally distributed. An overview of the GA algorithm is given in Table 2.3.

Crossover is the splicing together of two parents to produce children. It is usually

applied with a probability of 60% or more [10,13]. It is common for parents to produce

2 children to replace (or compete with) themselves.

Continuing our Cosmological Natural Selection example for GAs, black holes can

merge5. In this specific example, both parents are consumed and only one sibling is

5Black hole mergers are not explicitly mentioned in CNS.

16

Table 2.3: High level view of a genetic algorithm.

Genetic Algorithm

initialize population with random genetic material
generation = 0
while solution not found and generations remain

evaluate fitness of each member of the population
mutate population
create children by crossing over parents
assemble next generation population from parents
and children
evaluate stopping condition
generation = generation + 1

end while
output fittest member of population

Table 2.4: Crossover applied to the first two black hole universes from Table 2.2. They
have merged and replaced black hole 1. Black hole 2 was removed in the crossover
step.

Black
Hole #

mp

×10−27 kg
me

×10−31 kg
Fem

1
Fw

×10−11 Score

Evaluated
1 1.67 9.11 1 1 600
2 1.72 9.21 1.003 1.04 430
3 1.6 9.16 1.0001 0.89 170

Mutated
1 1.67 9.31 1 1
2 1.72 9.21 1.003 1.08
3 1.6 9.16 0.9999 0.89

Crossover
1 1.67 9.31 1.003 1.08
3 1.6 9.16 0.9999 0.89

17

produced. In Table 2.4, universes 1 and 2 are crossed over, while 3 is left alone. When

we compare the mutated and crossover rows of Table 2.4, we observe the following.

1. Mp and Me are selected from universe 1.

2. Fem and Fw are selected from universe 2.

3. These values (Mp1,Me1, Fem2 and Fw2) are combined together (crossed over) to

form a new universe.

4. This universe replaces universe 1.

5. Universe 2 is removed, as it has merged with universe 1.

Replacing parents with their offspring is a simple strategy. Other strategies have

parents and children compete to pass into the next generation. Alternatively each

member of the population may have a finite lifetime, but once it does expire, it is

removed from the population. In competitive selection, the higher scoring (more

fit) solutions are preferentially passed to the next generation. Note that low fitness

members also have a chance to pass to the next generation as well. This helps to

preserve genetic diversity.

The rest of the algorithm is straightforward. We check to see if the goal has

been achieved. If not, we repeat the process while we have generations remaining.

Otherwise we exit and if no solution was found, optionally present the best solution

found so far.

Fitness, mutation, crossover and preferential treatment for fitter members drive

the genetic algorithm. As preferential treatment is given to the fit, those members

spread in the population, bringing up the average fitness. Crossover randomly com-

bines two realities to produce a new one. This could fortuitously create an even more

fit member. Mutation prevents stagnation. By randomly injecting new values into

18

the “genetic mix,” a population doesn’t converge too early on good, but not optimal

values.

Genetic programming (GP) [44] is an extension of genetic algorithms in which the

solution is stored in a tree structure. This makes it easy to store and manipulate

programs, for example. All of the sequential program repair papers described here

use GP.

One significant weakness of heuristic search techniques such as genetic algorithms

is the selection of parameters. How big a population does one use? For how many

generations should it run? What rate should be selected for crossover and mutation?

Studies [6] indicate that parameter selection has a significant impact on the quality

of the solution generated. To complicate matters, there is no optimal parameter set

for all problems. Optimal parameters are problem dependent.

2.3 Search-Based Software Engineering

Search Based Software Engineering (SBSE) [32, 35, 47] is a field of computer science

in which heuristic search techniques, like genetic algorithms and evolutionary pro-

gramming, are used to solve a wide array of software challenges. They include (but

are not limited to) project planning, maintenance, reverse engineering, source code

comprehension [33,46], source code refactoring, component selection [9] and program

repair. The largest area of SBSE - and of interest to CORE - is concerned with testing

software [47]. SBSE techniques exist to generate, improve and optimize6 test suites.

Many software engineering problems are optimization problems or can be ex-

pressed as such; optimize for understanding or optimize the test suite size. SBSE

rephrases them as search problems: search for the optimal understanding, or search

6Improving and optimizing are different: The former could increase coverage (for example,) while
the latter removes redundant tests.

19

for the optimal test suite size. Any optimization problem representable as a mem-

ber of an evolvable population (like optimizing universes to produce black holes) and

expressible in terms of a score (fitness function: number of black holes produced by

said universe) can be adapted to search based techniques.

SBSE is often used when existing algorithms take too long, or are not known. The

randomness inherent to heuristic search means that from one invocation of the search

to another, one doesn’t receive the same answer or the same quality of answer. This

is often acceptable because near optimal solutions or optimizations are better than

no solution at all. For example, scheduling shifts for all of the vehicles and workers at

an airline taking into account all local labour and safety laws (pilot fatigue, vehicle

maintenance, vacations, . . .) is a hard problem. It may take a scheduling program

a week or more to come up with a solution. If a search-based approach determines

a solution within a few hours that is 3% worse7, that may be acceptable under the

circumstances.

Fitness functions can be programmed to examine trade-offs or problems with mul-

tiple, conflicting objectives [28]. For example, in the next release problem [9], cus-

tomers have a list of features they would like to see implemented. Each feature takes

time and costs money. A multi-objective heuristic search creates a series of scenarios

examining customer satisfaction against the cost of implementing subsets of these fea-

tures. Optimizing the conflict between them isn’t a yes-no problem. Many different

choices could be made with different consequences for customers and company.

One limitation faced by SBSE approaches is the search space. This is all of

the possible solutions to the search based problem that must be examined. Using

the simplified cosmological example above, the mass of the electron and proton are

constrained to be within two orders of magnitude of their values in our universe and

7And still complies with all laws and regulations.

20

the electromagnetic and weak forces are constrained to be within one magnitude. The

mass of the proton, mp, for example, can take on 100× 100 = 10, 000 different values

while the force of gravity can take on 10×10 = 100 different values. The search space

is then, 10000×10000×100×100 or 1012 different possible universes. This is large by

human standards, but easy for a computer to navigate. To be clear, heuristic search

techniques don’t test all 1012 combinations. In the example above, the simplified

universe search used 3 members (realities). If we let it run for 20 generations, there

are at most 3× 20 or 60 realities evaluated.

Flush with the success of explaining our universe we try to use genetic program-

ming to evolve the equations of the Standard Model of Physics ... and fail com-

pletely. The search space is all mathematical statements buildable from elementary

mathematics. The equations describing the interactions of matter and forces are the

stopping conditions. This is beyond the ability of GP8. Simply put, the search space

is too large. It is important to recognize that heuristic search has limits. One of them

is that it cannot create complicated things starting from nothing. A second is that a

heuristic search fails when the search space is too large or the distance in the search

space from ‘here’ (the starting point) to ‘there’ (an acceptable solution) is too large.

2.4 Automatic Single-Threaded Program Repair

If programs can’t be evolved, how can we use heuristic search techniques to repair

them? It is possible because we don’t have to start from scratch. We assume the

competent programmer hypothesis [2]: A programmer is competent and strives to

create correct programs. If the program has a bug in it, it is still mostly correct. All

it takes is a few changes (insertions, deletions, ...) in the proper spot(s) to correct the

8GP can’t even evolve a sorting algorithm from scratch [7].

21

error. The search space - the difficulty in getting from here to there - is then orders

of magnitude smaller.

Automatic sequential program repair has made great strides in the last five years.

It started with an approach capable of fixing bugs in toy algorithms [7]. No techniques

were applied to limit the search space so the approach didn’t work on programs larger

than roughly 10 lines of code. Further research has led to an approach capable of

fixing programs up to 40 lines [5].

At the same time a technique was developed by a different research group pref-

erentially targeting the part of the code where the error occurs. This approach also

assumed the error was written correctly somewhere else in the program. Part of

the fixing process involved copying the correctly implemented code to the region of

the error. Targeting the search this way allowed this approach to fix bugs in large

programs - up to 21,000 lines of code in early tests [49–51, 87, 88].

2.5 Concurrency

Until recently, sequential processing was the norm in desktop computers. One proces-

sor did all the work. By rapidly switching tasks, it provided the illusion of multiple

programs running at once. This illusion is propagated by the incredibly fast speeds

(gigahertz) at which these processors operate. There is a ceiling though, to increases

in processor speed: processors must shrink as they get faster. Heat generation and

quantum mechanics9 place a fundamental limit on how small (and thus how fast) a

processor can be. To continue the rapid gains of previous decades it is necessary to

place multiple cores inside desktop computers. This is the norm today10. Two to four

processors are commonplace and eight can be found in high-end systems.

9Quantum tunnelling for example, becomes a problem as components become smaller and smaller.
10October, 2013

22

Parallel processing occurs when many calculations are carried out simultaneously

on different processors in a computer. Fundamentally, any problem that can be broken

down into smaller, independent problems can be parallelized. Each sub-problem is

solved independently on different processors at the same time.

Most software today is written for sequential processing. This leads to the common

situation where one processor in a desktop computer is saturated with work while

the other(s) are idle. Software hasn’t yet caught up with the changes in hardware.

Writing parallel programs is much more difficult than writing sequential ones. Each

unit of computation talks to its neighbours and reads and writes data shared among

them. There is a rich literature on concurrent processing. We briefly survey some

terminology11 and describe how CORE misuses it in the next section.

A critical section is a piece of code available to multiple processes in a concurrent

program. It contains instructions that should only be executed by one (or a few) pro-

cess at a time - such as updating a bank balance. Mutual exclusion is the requirement

that two or more processes are not in a critical section at the same time.

Locks enforces the mutual exclusion in code. Simple locks allows only one process

access to the code at a time. Spin locks are a type of lock in which other processes

simply wait (spin) until the lock is free. This is efficient if the lock is only held for a

short time, but wasteful if the lock is held longer. When the lock is held longer than

it would take the operating system to reschedule the spinning process, it is wasteful.

Semaphores keep track of how many resources are free. A binary semaphore

has one available resource while a counting semaphore has a number N of resources

available.

Monitors are locks with additional properties. If a process, prA, is working in the

critical section of a monitor and cannot proceed for some reason, it can temporarily

11coughWikipediacough

23

relinquish its lock and go to sleep. That is, it gives up its remaining processor time

to another process, prB, that can make progress. When prA is able to make progress

again, it reacquires the lock then continues its work. Note that while prA has the

lock, it has exclusive access to the resource.

Recursive locks or mutex locks are locks that allows a process to acquire the lock

more than once, or recursively acquire the lock. Normally, if a process acquires a lock

and then attempts to acquire it again, it deadlocks. Mutex locks allow a process to

acquire it more than once. What makes mutex locks difficult to work with is that the

lock must be released the same number of times that it was acquired in order for it

to be free again. When acquiring and releasing the lock depends on complex logic, it

is possible that the acquiring and releasing of the mutex lock fall out of step.

Reader writer locks or multiple readers, single writer locks are locks that allow

multiple processes to read the data protected by the lock, but only one process to

write to that data. Reader writer locks have to prevent readers from reading while a

writer is writing. This can cause the writer process to wait forever or starve if there

are numerous readers and there is no provision to allow the writer process to write.

Conversely, allowing the writer process to write can hurt performance when writing

is frequent.

2.5.1 Java Synchronization

Java has built in support for concurrency12. The two synchronization constructs

CORE modifies are synchronized methods and synchronized statements. Synchronized

methods (Figure 2.1) contain the synchronized keyword in the method declaration.

This prevents more than one process from being within the object’s method at the

same time. Once one process has the method, all other processes must wait for it to

12http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html, retrieved August 2014

24

Figure 2.1: In Java, synchronized access to an object’s methods is enforced by adding
the synchronized keyword to the method header.

public class bankAccount {

public synchronized boolean withdraw (. . .) {
. . .

}

. . .
}

Figure 2.2: In Java, lines can be locked by synchronizing on any non-primitive vari-
able.

public class bankAccount {
private ob j ec t myLock ;
private currency balance ;

public bankAccount () {
balance = 0 . 0 ;
myLock = new ob j ec t () ;
. . .

}

public boolean withdraw (currency amount) {

synchronized (myLock) {
balance −= amount
. . .

}
}

. . .

}

25

Table 2.5: The algorithm for a physicist to write on the blackboard is shown on the
left. Two physicists working at the same blackboard end up in deadlock on the right.

Working Algorithm Deadlock / Starvation

function DoPhysics {
Pick up chalk
Pick up eraser
Write
Put down eraser
Put down chalk

}

Phys1: Thinks
Phys2: Thinks
Phys1: Pick up chalk
Phys2: (Waiting to pick up chalk)

Deadlock: Both are stuck

finish.

Lines or blocks of code are also synchronized by surrounding them in a synchro-

nized block (Figure 2.2). In this case a lock is needed. Any non-primitive type can

be used as a lock Java also allows an object to be used as a lock before it is created.

In both cases, when a synchronized method or block is exited, Java ensures that all

other processes waiting on them see the correct state of the object.

CORE mutates code by adding, removing, growing, shrinking and swapping these

synchronized blocks. When this thesis refers to synchronize blocks, it is referring to

what has been described here (Figures 2.1 and 2.1).

2.6 Deadlocks, Data Races and Synchronization

Blocks

Concurrent programming leads to new kinds of software bugs not found in sequential

software. Of concern here are data races and deadlocks. Each is illustrated with a

modern example; working physicists (with respect to dining philosophers). Imagine

26

two physicists writing at a blackboard13. They think, then write, then think again

and write endlessly. There is only one piece of chalk and one eraser in the room.

A physicists needs both before she can write. Once she picks up one she won’t put

it down until she has both and can finish writing. It doesn’t matter in which order

she picks up the chalk and eraser. In concurrent terms, each physicist is a process.

When they have both items (data accessors) they write (perform some computation).

Table 2.5 shows two possible outcomes for this situation. On the left, a physicist

successfully picks up both items. On the right, each picks up one item. As they are

unable to pick up the other, they are stuck, or deadlocked. Each is blocking the other

from proceeding.

A graduate student comes in with a question. Both physicists answer, interweaving

their replies with each other14. As string theory and loop quantum gravity describe

the universe in different and incompatible ways, the graduate student eventually

leaves even more confused. This is the essence of a data race: processes (physicists)

have unrestrained access to a resource (graduate student) or output. Data is lost by

being overwritten before it is read or the ordering of the data is incorrect or confused.

Unexpected values could be read, leading to errors or incorrect results.

2.7 Existing Work on Finding, Suppressing and

Repairing Deadlocks and Data Races

The success in fixing sequential programs has not been replicated reliably for con-

current programs. Many techniques exist to find concurrent bugs like data races

13One works on string theory, the other on loop quantum gravity - two different and incompatible
ways of including gravity in our fundamental theories of reality.

14Its simple really. Just integrate the Hamiltonian from 0 to null infinity in 5-space using hyper-
bolic coordinates while obeying the weak energy condition in Einstein-Bonnet gravity.

27

and deadlocks. For instance CHESS [60] is a model checking framework for finding

concurrency bugs in Windows programs. Deadlock detection in Java programs using

multiple static analysis is described in [62]. Static detection of deadlocks, data races

and reachability bugs is often inaccurate. An approach to improving on this by using

heuristically directed model checking is described in [70].

A method for detecting data races in Java programs using ConTest is described

in [53]. In related work [45], attempts are made to suppress bugs by influencing the

scheduling of threads. Scheduling is altered to try and decrease the probability of

a bug occurring. This approach alters scheduling but doesn’t fix the code itself. A

method of fixing data races is implemented, but ensuring the fix doesn’t introduce

new problems, like deadlocks, requires model checking and is left by the authors as

future work.

Implicit atomicity arbitrarily groups consecutive dynamic memory operations into

atomic blocks to enforce memory ordering at a coarse grain. It tries to hide data

races (and atomicity violations) by reducing the number of interleaving opportuni-

ties between memory operations. Atom-Aid [59] implements this idea, reducing the

probability that data races and atomicity violations will occur.

AFix [40] is a system for fixing single-variable atomicity violations in C/C++

programs. It works in multiple steps. First it uses CTrigger - an in house tool

- to dynamically detect atomicity violations. AFix then develops patches for each

bug. Once all patches are created, they are merged and optimized. Thread noising

techniques are used to test the fixes created by AFix. Encouraging results are reported

from this approach.

28

2.8 Modelling

This section provides a very brief introduction to modelling. In particular we look

at the B method. A model describes a system and what it does in a mathematically

precise and unambiguous way. Model proving is an automatic, formal verification

technique that systematically checks if a formal property holds in the model. A

model is correct when it satisfies all the properties (invariants, pre-conditions, ...)

obtained from the specification. Note that correctness is only as good as the model

and the engine doing the checking15.

B [1, 71] is a formal method for specifying, designing and implementing software.

It is a modelling language designed to ease the transition between programming and

modelling. Its structure is familiar to anyone who has worked with code. In modelling

one writes mathematical variables, sets, or relations and the constraints between

them. These constraints describe the desired behaviour of those sets and variables.

The largest hurdle to overcome when modelling for the first time is changing

mindsets. When developing code, one is telling the computer what to do. When

modelling one is telling the computer what to do by describing what holds true. True

statements are the desired behaviour. The prover’s (analogous to a compiler) role is

to check the model for any holes, ambiguities or contradictions to the “truth” the

modeller is creating and then display them. Finding any holes is similar to failing to

compile. One has to find out what went wrong, correct the mistake and try again.

Figure 2.3 is an example of a simple B model. The desired outcome is to add

two integers, with the restriction that the first integer must be between 0 and 100

inclusive. This model (called a MACHINE in B parlance) declares two variables,

Num1 and Num2 in the VARIABLES clause. All variables are typed within the

15The author has encountered and reported a bug in the Event-B prover.

29

INVARIANT clause. Additional restrictions and relationships among variables, like

Num1 < Num2 are also specified here. Invariants must always hold true. Initial

values are given to variables in the INITIALISATION clause.

OPERATIONS are analogous to functions. SetNumbers accepts two inputs. PRE

conditions are invariants that must hold true for the operation to be called. Here

the types of input arguments InArg1 and InArg2 must be integers. Values are as-

signed to Num1 and Num2 in parallel, || . Operation AddNumbers adds the numbers

and returns them in the locally declared OutResult variable. Note the (arbitrary)

restriction of Num1’s value in the precondition of AddNumbers.

The power of modelling is proving that the model is correct and defect free. Cor-

rectness by design is enforced by the generation of proof obligations by the B engine

that the models must fulfil. Proof obligations are the formal contracts (evidence and

guarantees) showing the model is correct. Some of the properties that a B model

checker [15] looks for include:

• Assertions are always satisfied.

• Initialization satisfies all invariants.

• Results of operations preserve all invariants.

• Types of variables are preserved.

• User-defined sets are non-empty.

• Assignments to variables do not cause them to overflow (eg: x is always <=

MAXINT) or underflow (x is always >= MININT).

All proofs must evaluate to true for the model to be correct. (Analogously, a

program must be correct for it to compile.) A good model checker automatically

30

discharges (proves) many proof obligations using internal rules and heuristics found

in first order logic. Others require the modeller to work interactively with the model

checker to either prove or refute the remaining proof obligations.

When the model discharges all proof obligations we say it is correct by design.

That is, the prover has exercised all of its ability to find holes, ambiguities and

contradictions within the model and failed.

One proof obligation is unfulfilled for the machine in figure 2.3:

Check that the invariant (Num1 < Num2) is preserved by the operation

- ref 3.4 => InArg1 + 1 <= InArg2

The INVARIANT clause has the requirement, Num1 < Num2. This isn’t enforced

by the preconditions of the SetNumbers operation. (In B, invariants are not auto-

matically added to preconditions upon evaluation.) In effect, the prover is saying,

‘In SetNumbers it is possible to keep adding one to InArg1 until is is equal or larger

than InArg2. Once they are assigned to Num1 and Num2 respectively, the invariant

is broken.’ Adding InArg1 < InArg2 to the PRE clause of SetNumbers satisfies the

invariant.

In B, C source code can be generated from the models. If the models are correct

by design, then the code is as well. Can this be done in the opposite direction? That

is, given source code, can we create a model from it and formally check its properties.

We can with tools like Java Pathfinder (JPF), as described in the next section.

2.9 Model Checking

Model verification proves that a model satisfies all of its proof obligations. It is dif-

ferent from model checking in the following respect. Model verification examines the

31

consistency between a model and its requirements, while model checking enumerates

and examines all of the states a model of the program can reach and checks them

against formalized requirements or other desired properties. Further, model checking

does so for all thread interleavings. Both are formal techniques. Only model check-

ing exhaustively explores the state space - the space of all states reachable by the

program.

Many of the properties checked for are built into the model checking environment

itself. This removes the burden from the user of having to implement these checks

in every project. Properties that model checkers can test for include correctness,

reachability, safety, liveness, fairness, exceptions, deadlocks and data races.

Attempting to model check a program can end in three different ways. First,

the model has all of the desired properties and passes all checks, that is the model

satisfies the formalized requirement or property. Second, the model checker runs out

of memory. This is the state space explosion problem. Techniques to deal with this

are described below. Third, a counter-example is found describing a deficiency in the

model. Information in the counter-example should give some indication of what went

wrong. Even with the description it may take some effort to determine the source

of the defect. It could be a modelling error : The model doesn’t reflect the design,

so it needs to be corrected. Otherwise the design could be ambiguous or incorrect

and could need to be improved. Lastly, it could be a property error. An invariant or

precondition in the model doesn’t reflect the design document so it must be changed.

Before discussing the relevance of model checking to CORE, we need to know

what state spaces are. Data and control are the two looked at here. Data state space

is the total number of different values the variables and objects in the program can

take on over the program’s life. Table 2.6 shows a fragment of a program for which

we want to calculate the data state space. Variable a is assigned a random value in

32

Table 2.6: Calculating the size of a state space.

Program Fragment States Per Line

int a = 0, b = 0, c = 0, d = 0;

a = random(1, 100);
b = random(1, 3);

c =random(1, 3);
if (c == 1)

d = 7 * random(1, 100);
else if (c == 2)

d = 5 * random(1, 10);
else

d = 10;

100 states
3 states

100 states

10 states

1 state

the range of 1 to 100, variable b in the range 1 to 3. Taken together a and b can

take on 300 different states: {{a = 1, b = 1}, {1, 2}, ...{1,100}, {2, 1}, ... {2, 100},

...{3, 100}}. Separately the if-elseif-else structure imposes a restriction on the value

of d. It can be either random(1, 100) or random(1, 10) or 10. As they are mutually

exclusive, these states are summed, not multiplied together. State sizes are 100, 10

and 1 for c= 1, 2 and 3 respectively giving us 111 states. To find the total number of

data states, multiply 300 by 111 to get 33,300 states for this fragment. Two examples

of state are {a = 42, b = 2, c = 1, d = 93} and {65, 3, 2, 7}. Control state space

enumerates the number of different paths through the code. Here the control flow is

3, one each for the if, else if and else branches.

For the data state space, model checkers exhaustively explore all 33,300 states.

When scaled to realistic programs it becomes obvious that their state spaces are huge.

Computers have finite amounts of memory and processing power so techniques have

to be implemented to deal with this data state space problem.

33

Table 2.7: Exploring the interleavings of the working physicists. In the left column,
ordering is enforced so no deadlocks occur. No enforcement exists for the middle or
right columns. Luckily the center column doesn’t deadlock, but the right column
does.

Enforced Ordering No Deadlock Deadlock

Ph1: Thinks
Ph2: Thinks
Ph1: Pick up chalk
Ph1: Pick up eraser
Ph1: Writes
Ph1: Put down eraser
Ph1: Put down chalk
Ph2: Pick up chalk
Ph2: Pick up eraser
Ph2: Writes
Ph2: Put down eraser
Ph2: Put down chalk
...

Ph1: Thinks
Ph2: Thinks
Ph2: Thinks
Ph1: Pick up chalk
Ph1: Pick up eraser
Ph1: Writes
Ph1: Put down eraser
Ph2: Pick up eraser
Ph1: Put down chalk
Ph2: Pick up chalk
...

Ph1: Thinks
Ph2: Thinks
Ph2: Thinks
Ph1: Thinks
Ph1: Thinks
Ph1: Thinks
Ph2: Thinks
Ph2: Thinks
Ph2: Pick up chalk
Ph1: Pick up eraser

Deadlock

Data races and deadlocks are of interest, so we explore how a model checker

looks for them in greater depth. To find deadlocks a model checker has to explore the

interleavings of concurrent threads, the interleavings state space. That is, every single

combination of the ways in which statements from separate threads can be mixed

together must be examined. Table 2.7 illustrates different situations encountered

by the working physicists. In the left column, ordering has been enforced by some

kind of synchronization mechanism causing physicists to write in turn. Efficiency is

sacrificed for safety. Locking is removed in the central column. By luck or design this

interleaving doesn’t contain a deadlock. On the right is an interleaving leading to a

deadlock.

The long list of ‘Thinks ’ from the right column of Table 2.7 emphasizes the re-

quirement that ALL interleavings must be explored - even when redundant. After

some thought we realize a number of statements in the working physicists DoPysics

34

Table 2.8: Two examples of interleavings with partial order reduction. Ordering
is enforced in the left column. The lack of ordering in the right column causes a
deadlock.

No Deadlock Deadlock
Ph2: Pick up chalk
Ph2: Pick up eraser
Ph2: Write
Ph1: Pick up eraser
Ph1: Pick up chalk
Ph1: Write
...

Ph1: Pick up chalk
Ph2: Pick up eraser

Deadlock

function from Table 2.5 have no effect on the existence of deadlocks. Put down eraser,

put down chalk, think and even write can all be removed from the list of statements

that must be interleaved. Only pick up chalk and pick up eraser determine if there

is a deadlock and only explain to graduate student determines if there is a data race.

Partial order reduction is a family of techniques that examines these dependencies

and removes the statements not affecting the outcome. There is a significant savings

in memory using this technique. Programs that are orders of magnitude larger can be

model checked when partial order reduction is enabled. Table 2.8 contains a deadlock

example, while Table 2.9 contains a data race example, using partial order reduction.

2.9.1 Java PathFinder

Java Pathfinder (JPF) [84] is the model checker used in CORE. This section gives a

brief description of JPF and surveys some scholarly work done on or with it.

Initially model checking was most often used during the software design phase.

Designs are simpler than programs and have smaller state spaces. The authors of

JPF created it in an attempt to nudge the formal methods community more towards

model checking code. They cite a number of reasons:

35

Table 2.9: Exploring interleavings with partial order reduction leading to potential
data races. As in previous cases, ordering in the left column prevents a data race.
There is no ordering in the right column, leading to a data race. ‘Leaves’ is included
for understandability.

No Data race Data race

Ph1: Explain to student
Ph1: Explain to student
Stu: Leaves
Ph2: Explain to student
Ph2: Explain to student
...

Ph1: Explain to student
Ph2: Explain to student

Data race

• Errors exist in programs regardless of model checking the designs.

• Critical section errors and deadlocks are introduced at a deeper level of detail

than in the design document.

• Formal methods (such as JPF) should support debugging and error location

along with model checking.

JPF is a model checker and a verification, analysis and testing environment for

Java. It has a number of features in it to combat the state space explosion problem.

Partial order reduction, described above, by static analysis, is one of them. Two

other tools are integrated into JPF to perform runtime analyses: Eraser [36] detects

data races while LockTree detects deadlocks. State space collapse is an optimization

in JPF in which every item (object, variable, ...) in a state is placed in a table with

a unique index. Objects are then compared by computing and comparing indexes

instead of the objects themselves. This optimization increased the number of states

stored in memory and the number of states compared per second by two orders of

magnitude each.

Predicate abstraction is another optimization technique used by JPF in which a

36

program with a large or infinite state space is represented or abstracted by a finite

number of predicates. A predicate is a function that takes a variable number of argu-

ments and returns true or false. Model checking is performed on the predicates instead

of the actual program. If a counter-example is found on the predicates, they can be

checked against the actual program. If the counter-example is false, the abstraction

is improved by adding or modifying predicates so the counter-example doesn’t occur

again16.

2.9.2 Existing Work on Java Pathfinder

Most of the existing work is related to improving JPF’s model checking capabilities.

For example, an experience parallelizing JPF is reported in [21]. In their study, the

authors parallelized random state space searching, reporting increased speeds of 2 to

1000x.

Delta Execution [18] is similar to incremental modelling. Whereas incremental

modelling works across model checking runs, delta execution works within a run. It re-

uses both the storage and model checking results of heap states. Only the uncommon

parts of the heap - the deltas - are stored and executed separately. For example,

if 3 states are {q, r, s, w}, {a, r, s, t} and {z, r, s, b} the common state, { , r, s, }, is

stored and model checked once. Only the deltas, {q, , , w}, {a, , , t} and {z, , , b}

are stored and model checked independently. Exploration times are improved by a

factor of up to 11× in evaluations.

Other techniques used by JPF include mixed execution [19]. This technique im-

proves the execution time of deterministic blocks in JPF by translating the state from

the JPF virtual machine to the host Java virtual machine. Deterministic blocks don’t

16http://chicory.stanford.edu/satyaki/research/PredicateAbstraction.html

37

require Java Pathfinder’s virtual machine layer, so effort is saved as only one virtual

machine – not two – is used. Further, lazy translation is used to translate only the

parts of the state that an execution dynamically depends on. Average improvements

of 36% are realised in experiments.

JPF-SE [3] performs symbolic execution of the code. In their words:

“Programs are instrumented to enable JPF to perform symbolic execu-

tion; concrete types are replaced with corresponding symbolic types and

concrete operations are replaced with calls to methods that implement

corresponding operations on symbolic expressions. Whenever a path con-

dition is updated, it is checked for satisfiability using an appropriate de-

cision procedure. If the path condition is unsatisfiable, the model checker

backtracks.”

Object graphs are collections of objects in which the nodes are the objects and the

edges are the connections between objects. These can be test inputs to programs. A

method of automatically creating object graphs meeting user constraints is described

in [30] along with optimizations made to the process. Average speed increases of 16x

are reported in the experiments performed.

Basset is a JPF-based project to model check the actor based languages, Scala

and ActorFoundry. An adaptation layer replaces the actor libraries with simpler ones

so the model checking is focused on the application code. Specifically, features such

as automatic thread migration and balancing (among others) are removed. Increased

speeds averaging 30% are reported in experiments.

In [82] the concurrency libraries introduced in Java 1.5, java.util.concurrent are

replaced by model classes. This has two effects. First, model classes don’t need to

be model checked. Second, they are represented in the model checking space by a

38

single integer. When the code is checked, the model Java interface is used to delegate

the execution of the libraries to the host virtual machine on which JPF runs. Model

Java interface code isn’t model checked by the JPF virtual machine, so effort is saved.

Average improvements of 40% are reported in experiments.

Heuristic techniques like particle swarm optimization [27] are often used in directed

model checking approaches. The search algorithm guides/directs the exploration to

an area likely to contain an error or counter-example, saving effort over an exhaustive

search for it. A counter-example is usually created with less effort than using a

regular model checking search algorithm. It is also possible the error path is shorter

than with exhaustive techniques. Counter-example generation cannot prove a model

correct of course. In [80] an Estimation of Distribution algorithm is used to find

counter-examples.

Counter-example generation with genetic algorithms [52] was implemented us-

ing a new memory operator. In the language of this proposal, the authors used a

modified form of incremental modelling to save memory. Only the previous state is

remembered, anything older is thrown away.

2.9.3 Incremental Model Checking

Model checking involves the examination of all states and transitions in a program.

Table 2.10 gives state transition examples for our working physicists. In the starting

state, physicist 1 has chalk in hand and physicist 2 is thinking. If the total number

of possible transitions, or things to do is 6 {pick up chalk, pick up eraser, put down

chalk, put down eraser, think, write} and there are two physicists then there are 12

total transitions from this state. Four interesting cases are shown in the table. The

last entry of course leads to a deadlock.

Incremental model checking involves using the output of a model checking run as

39

Table 2.10: Examples of a current state and transitions to a next state for working
physicists. In the first case, when the physicist is only holding the chalk, she cannot
think or put it down, so there is no change in state.

Current State Transition Fn New State

Phys. 1 has chalk,
Phys. 2 is thinking

Think(Phys1), or
PutDownChalk(Phys1)

Transition disabled. No
state change.

Phys. 1 has chalk,
Phys. 2 is thinking PickUpEraser(Phys1)

Phys. 1 has chalk and eraser,
Phys. 2 is thinking

Phys. 1 has chalk,
Phys. 2 is thinking Think(Phys2)

Phys. 1 has chalk,
Phys. 2 is thinking

Phys. 1 has chalk,
Phys. 2 is thinking PickUpEraser(Phys2)

Phys. 1 has chalk,
Phys. 2 has eraser

input to the next run. This speeds up the second run by re-using calculations from

the first run.

Incremental model checking is a two step process - first recording and secondly,

re-using the results of model checking runs. An implementation similar to [48] is

described. In the first run, a program is model checked the standard way. Decisions

made during the run are recorded in a file in a Hash(Start state)-transition function

call-Hash(end state) format similar to Table 2.10. Note that transitions that cannot

be taken and transitions leading to error states are not recorded.

Changes are then made to the program code. There are two linked restrictions

that should be adhered to for incremental modelling to work well. First, these changes

should minimally alter the state space: variables and their types shouldn’t be changed,

added or removed from classes, method or method calls. Second, the hash of the

states should be the same. When the variables and types don’t change, the hash

doesn’t change. This is so the Hash(Start state)-transition function call-Hash(end

40

state) match up between the two versions of the program. For the parts of the code

where the state space has changed, it must be fully model checked again.

The output of the previous run and the modified source are the inputs to the

second model checking run. Changes from the previous run are stored to a change

list for the current run. States in the current model checking run are hashed and

searched for in the previous run and change list. Three cases result. First, if the state

is in the change list, this state has already been visited in this run. We don’t have

to evaluate this state again or visit any of it’s child states. This is standard model

checking practice.

Second, the state is found in the previous run. We don’t have to re-evaluate this

state again, but we cannot assume that all child states reached from this one will

be the same. A change “further down” may be different so all child nodes must

still be examined. Effort is saved, though, by not re-evaluating this state. This is

the innovation of incremental modelling and the source of the performance boost. If

changes between program versions are small - like mutation induced changes - this

case should be very common.

In the third case, the state isn’t in either the previous run or change list. This is

a new state added since the previous run. It must be evaluated and all child states

explored. It is eventually added to the change list. As changes to the program are

usually small - and mutations are definitely small changes - this case should happen

rarely.

Table 2.11 summarizes these three cases. Every entry of false is effort saved. At

the end of the incremental run, the previous run data list and change list for the

current run are combined together and written to file. This becomes the incremental

data for the next run.

A brief survey of incremental model checking (IMC) in the literature rounds out

41

Table 2.11: In incremental modelling, a state seen on a previous run doesn’t need to
be evaluated again. Its child states must still be checked. Every entry of false in the
table is effort saved.

Case Evaluate
Evaluate
Children

New in
Incremental
Modelling

Already visited transition false false No
Existing transition from
previous run

false true Yes

New or modified transition
in current run

true true No

this section. IMC is implemented in Java Pathfinder in [48]. Average speed increases

of 40% are realised. IMC has been applied by the same group to the verification

of network protocols in J-Sim [78]. In [16] IMC is applied to an inter-procedural

algorithm analysing recursive state machines for null pointer dereferencing. Blast [37]

is an implementation of a lazy-abstraction algorithm that incrementally model checks

temporal safety properties during software development.

Test cases are used by CORE to demonstrate the data race or deadlock. IMC has

been used in a framework [25] to create tests for the modified parts of a program that

are checked against the modified specification. Counter-example generation using

IMC and the estimation of distribution algorithm is described in [81].

42

Figure 2.3: Example B machine that adds two integers and returns the result. Note
that Num1 must be between 1 and 100 inclusive.

MACHINE AddTwo

VARIABLES Num1, Num2

INVARIANT
Num1 ∈ INTEGER ∧ Num2 ∈ INTEGER ∧ Num1 < Num2

INITIALISATION

Num1 := 0 ‖Num2 := 1

OPERATIONS
SetNumbers(InArg1, InArg2) =
PRE

InArg1 ∈ INTEGER ∧ InArg2 ∈ INTEGER
THEN

Num1 := InArg1 ‖
Num2 := InArg2

END;

OutResult ←− AddNumbers =
PRE
Num1 ≥ 0 ∧ Num1 ≤ 100 ∧OutResult ∈ INTEGER

THEN
OutResult := Num1 + Num2

END;
END

43

Chapter 3

Literature Survey

3.1 Introduction

This chapter surveys relevant research literature on concurrent bug detection, sup-

pression and fixing.

3.2 Literature Survey

3.2.1 Falcon: Fault Localization in Concurrent Programs

Falcon [66] is a framework for detecting atomicity and order violations. It proposes

a pattern-based analysis of concurrent programs to find and rank the two types of

violations. It records memory access sequences from threads on concurrently used

variables and then performs a statistical analysis on them to assign a suspiciousness

score to each. They are ranked and presented to the user.

The Soot Analysis framework is used to perform a static thread-escape analysis

of the Java bytecode to both determine which variables could be shared and then to

instrument the program to record all shared accesses of these variables at runtime.

44

A test case is selected and the program is run many times by Soot to try and expose

faulty interleavings. Memory access sequences are then associated with the pass/fail

results of the testing. Suspiciousness values are computed from both the memory

access sequences and the testing results.

Falcon was evaluated against a suite of programs with known bugs. It consistently

placed the bug in the first or second rank. On average Falcon slowed the execution

of each program by a factor of 8 to 10.

CORE and Falcon share some common steps - static analysis, determining vari-

ables used concurrently and multiple runs of the program by test case(s). CORE is

more general, in that it fixes both data races and deadlocks. Falcon’s output could

also be used as input to CORE to help find faults to fix.

3.2.2 AtomAid: Detecting and Surviving Atomicity Viola-

tions

Data races occur when two or more threads access the same data at the same time

without synchronization and at least one of the accesses is a write. Being data

race free doesn’t guarantee correct programs as correctness depends on a stronger

condition called atomicity, that “requires that every concurrent execution of a set of

operations is equivalent to some serial execution of the same operations. Atomicity

violations, sometimes called high-level data races, can cause erroneous behaviours

when a consistency requirement exists between multiple pieces of shared data [59].”

Implicit atomicity is the grouping of dynamic memory operations into atomic

blocks to enforce coarse grained memory ordering. These systems look for a series of

operations performed by one thread and place them in the same block - effectively

making the entire block of operations atomic. No special annotations are needed.

45

Implicit atomicity generators suppress atomicity violations by reducing the number

of thread interleavings leading to an error. The authors of [59] created Atom-Aid,

that “creates implicit atomic blocks intelligently instead of arbitrarily, dramatically

reducing the probability that atomicity violations will manifest themselves [59].”

Atom-Aid studies the program as it is running to detect likely atomicity violations.

This allows it to adjust blocks dynamically, allowing the program to find and survive

these bugs. It is also able to report the possible locations of atomicity violations to

help with the debugging process. In tests Atom-Aid was able to suppress 99.8 to

99.9% of threads leading to atomicity violations.

CORE and Atom-Aid could be complimentary tools. Atom-Aid seeks to suppress

bugs and to aid in debugging by reporting where the atomicity violations occur.

CORE could use the bug reports generated by Atom-Aid to better target the buggy

areas of code.

3.2.3 AtomRace: Data Race and Atomicity Violation Detec-

tor and Healer

AtomRace [53] is similar to Atom-Aid in that it attempts to detect and suppress data

races and more generally, atomicity violations in Java programs. To find atomicity

violations AtomRace must be given a list of atomic sections to be monitored. If the list

isn’t supplied, AtomRace can attempt to generate one by invoking static or dynamic

analysis tools. AtomRace uses ConTest to noise the program in an attempt to find

violations. It suppresses errors by either adding synchronization or by influencing the

Java virtual machine scheduler to avoid buggy interleavings.

AtomRace has a second way of attempting to heal/suppress atomicity violations.

It can try to add locks (called healing locks) to the program to prevent them. The

46

approach guarantees that no new atomicity violations will be added as long as the

list of atomic sections is correct. It is possible that the added lock(s) could produce a

deadlock. The authors recommend using a model checker to search for this possibility.

Like Atom-Aid above, AtomRace also records information to help developers fix bugs.

The authors envision a scenario in which programs are protected in real time.

First, the atomic sections are supplied and the program is analysed by AtomRace.

A list of potential locations for noising or lock insertion is produced. These possibil-

ities are model checked and bad entries are removed from the list. AtomRace and

the modified list are distributed with the program and run with it to provide bug

suppression in real time.

CORE and AtomRace are similar in that they both use ConTest to noise programs

to expose bugs. CORE does more, as it attempts to fix both data races and deadlocks,

where AtomRace only suppresses data races. AtomRace uses a model checker in an

ad-hoc way to look for deadlocks. CORE integrates it fully into the fixing process -

using it to look for both data races and deadlocks and updating the search strategy

with information received from it. Both require information on concurrently used

sections of code to target their search. CORE generates the classes, methods and

variables used concurrently from the tools it uses. AtomRace generates or is supplied

with the atomicity blocks. Similar to Atom-Aid, AtomRace generates debugging

information for the developer. CORE could use this information to help its own

search.

47

3.2.4 Bypassing Races in Live Applications with Execution

Filters

In [92] the authors describe Loom, a framework allowing users to quickly create and

apply patches for data races to live running software. First, the Loom update engine

is compiled into the target buggy program and the program is executed. A data

race is detected by users or by a race detection tool. Developers analyse the race

and use Loom to create a rough patch. Most likely more code than necessary is

synchronized by this patch. Loom fills the gap between bug detection and bug fixing.

For example, if two lines in two methods are racing, a Loom patch might be to make

both methods mutually exclusive. This patch is written in a Loom specific language

and then is applied to the running program without needing to restart it. Overhead

on the managed program is minimal, < 5% in tests.

Loom is limited in its scope. It doesn’t detect data races or perform any analysis

on them. It is up to the programmers to find and triage races to create the rough

patch required by Loom. Further, Loom doesn’t perform any analysis or checking

on the patch when it is running. That is, users have no idea whether the patch is a

good one or not. Further, multiple Loom patches can be applied to a program. They

could introduce a deadlock because Loom doesn’t perform any kind of global analysis

or reasoning about the patch interactions. Finally, the authors of Loom note that in

suppressing certain interleaving leading to known races, Loom could expose races in

other interleavings that become more likely due to the restrictions.

48

3.2.5 Kivati: Fast Detection and Prevention of Atomicity

Violations

Kivati [14] is a framework that detects and avoids atomicity violations in C programs

on Linux. It claimed to be the first to do so with low overhead (19%) on commodity

x86 processors. This low overhead is achieved in part by using hardware watchpoints

found on processors like the x86.

Kivati’s detection and prevention algorithm begins with a static analysis of the

program to determine the regions it believes are atomic. Annotations are added to

the source to identify these regions. When the program is run, Kivati checks variable

accesses against the list of believed atomic regions. If two accesses lead to an atomicity

violation, Kivati reorders the accesses to avoid it. The framework then records the

variables and threads involved so developers can check them. Kivati also maintains

a list of false positives that it can safely ignore.

The framework can also be run in bug finding mode. When this is done the

overhead is slightly larger as Kivati pauses threads that it believes are in an atomic

section of code. By pausing the thread however, it increases the chance of causing an

atomicity violation with another thread.

3.2.6 ColorSafe: Architectural Support for Debugging and

Dynamically Avoiding Multi-variable Atomicity Viola-

tions

ColorSafe [58] is a framework for detecting and avoiding single and multiple variable

atomicity violations. It does so by grouping variables together and giving them the

same colour - or group ID. Most atomicity violation detection techniques limit them-

selves to single variable detection because multiple variable detection is too difficult.

49

ColorSafe handles this naturally by treating all variables of the same color as a single

variable. This way, multiple variable atomicity violations are handled naturally.

It operates in two modes, debugging and deployment. In debugging mode it

detects and records atomicity violations. It attempts to weed out false positives by

applying heuristics. Developers can add their own groups by writing annotations in

their code. In deployment mode detection is relaxed to find more violations. When it

detects what it believes to be a violation, ColorSafe applies ‘ephemeral transactions’

to the thread of the violating colour. Ephemeral transactions don’t change program

state. Their purpose is to delay a thread until the atomicity violating danger has

passed.

ColorSafe has one large barrier to adoption though. It requires hardware support

for all of its core operations: hierarchical multilevel memory tagging, buffers and logic

to handle history items, cache coherence protocol support and transactional memory.

Processors with these specifications weren’t available to the authors, so they evaluated

ColorSafe by simulating the missing hardware with the Pin instrumentation system.

3.2.7 Deterministic Dynamic Deadlock Detection and Re-

covery

Sammati [31] is a runtime system that automatically and deterministically detects

and recovers from deadlocks in multithreaded applications. It is designed to work

with POSIX threads as a pre-loadable library. Sammati doesn’t require annotations,

access to source code or recompilation of the program. It preserves existing lock

semantics while deterministically eliminating deadlocks without deadlocking itself.

At a high level, memory updates from a critical section are delayed. They take place

after all of the locks protecting the critical region have been released. Deadlock are

50

searched for at the acquisition of each lock. Recovering from a deadlock requires

Sammati to select a victim lock and discard all of the updates that would have been

performed after the release of that lock.

For Sammati to work efficiently, the following five aspects of their framework must

be implemented efficiently.

• Identify critical sections and their updates,

• Isolate and delay these updates until all lock are release,

• Preserve the existing lock semantics,

• Apply the updates when all locks have been released and

• Perform deadlock detection and recovery.

Sammati cannot recover thread local storage data. This data was initialized and

manipulated from shared libraries making it too difficult for Sammati to determine

where the data was and how to manipulate it. The authors described how they over-

came this by using the LLVM compiler infrastructure to instrument store instructions

at compile time. Sammati can then efficiently track thread local data. This requires

access to the programs source code and the recompilation of that code.

3.2.8 Automated Atomicity-violation Fixing

AFix [40] is a framework that attempts to automate the entire bug fixing process for

single-variable atomicity violations. It begins by performing a dynamic analysis of

the program using CTrigger, an in-house bug detection tool. CTrigger catalogues all

potential atomicity violations and then attempts to reproduce them by noising the

program.

51

It uses a combination of static analysis and static code transformation to generate

patches for each bug. AFix examines the call graph and looks for execution paths

into the critical region that don’t have a lock. It inserts the missing locks along all of

these paths. Locks are similarly released on all paths leaving the critical region. AFix

guarantees that this locking policy will not introduce new atomicity violations into

the program. AFix then attempts to statically merge and harmonize patches where

it can. For example, if patch A is completely subsumed by patch B, A is deleted.

Overlapping patches can be harmonized - reducing the number of locks used and

reducing the chance of deadlock.

AFix doesn’t think globally about lock design [56] so it can introduce deadlocks

into a program when multiple patches are introduced. Two phases of deadlock de-

tection are used to try and find them. In the end the developer is responsible for

trying to fix any deadlocks with debugging information generated by the detection

algorithms. Performance profiling is available to help developers manually modify

patches to increase efficiency. Their testing phase also has two steps. First, CTrig-

ger runs the patched program with injected noise to search for faulty interleavings.

Second, a “general interleaving test implemented by us [40]” is used for the same

purpose.

CORE and AFix are similar in that they both use static analysis and noising.

Where AFix introduces new locking variables, CORE re-uses existing variables in the

synchronized blocks. AFix fixes single variable atomicity violations and may introduce

deadlocks. Neither approach thinks globally about lock design. CORE fixes all types

of data races and deadlocks fixable by modifying synchronized statements. CORE

can also introduce data races and deadlocks as well in code not protected by test

cases.

52

3.2.9 Axis: Automatically Fixing Atomicity Violations Through

Solving Control Constraints

Axis [56] is described and positioned as a better AFix. Unlike AFix, it tries to

automate the entire process of fixing single and multi-variable atomicity violations.

It begins by performing a dynamic analysis of a program using Pecan, an in-house

bug detection tool that catalogues all potential atomicity violations.

Unlike AFix, Axis is built upon a theoretical foundation that maximizes concur-

rency for each atomicity violation. It does this by using a branch of control theory

called the ‘supervision based on place invariants’ (SBPI) as the theoretical founda-

tion. Atomicity violations are fixed by modelling the concurrent properties of the

program as Petri nets and then solving a set of control constraints on these nets. A

constraint solver is used to add missing locks around the critical region.

Like AFix, Axis doesn’t reason globally about lock design either. Instead, the

program is instrumented by another tool (like Gadara [86]) that dynamically detects

and avoids deadlocks introduced by Axis. Gadara imposes runtime overhead on the

program, that never exceeded 10% in tests. It uses discrete control theory to detect

deadlock situations and then dynamically delays thread executions to avoid them.

3.2.10 Automatic Repair for Multi-threaded Program with

Deadlock/Livelock using Maximum Satisfiability

One way to try and avoid deadlocks is to use trylocks instead of regular locks. A

trylock tries to acquire a lock, and if it fails, executes a failure block where remedial

steps can be taken - like releasing locks and trying again. While this helps, livelocks

can occur. Livelocks occur when threads are active, but not making progress. (Imag-

ine two people trying to pass each other in a narrow corridor. They both step the

53

same way over and over - repeatedly getting in each others way. They are locked as

neither is advancing, but live because both are moving.)

In this paper [54], the authors propose a method to fix deadlocks, livelocks and

deadlivelocks (deadlocks hereafter) in concurrent programs. First, a static analysis

of the program is performed to find cyclic lock dependencies that could result in

deadlocks. These dependdencies are transformed into a boolean satisfiability problem

(SAT). Weighted partial maximum satisfiability is used to find the minimal fixes for

each deadlocks.

Similar to CORE, the framework includes a number of constraints to reduce the

search space. The only code changes that are made are to turn locks into trylocks

and the reverse. When a trylock becomes a lock, the false branch is disabled. When

a lock becomes a trylock, the false branch rolls back the locking. This roll back can

be complicated so the framework prefers to change trylocks to locks. When a trylock

is created, the roll back path is minimized in terms of function calls, shared variable

updates and lock acquisitions.

Static analysis can lead the framework to try and fix false positives. It can only

fix deadlocks fixable by changing locks to trylocks and the reverse. Control flow

isn’t changed. The framework cannot automatically handle complicated rollbacks.

Human intervention may be required. They also assume the competent programmer

hypothesis implicitly when they assume each lock is properly unlocked. No locks are

added or removed.

54

3.2.11 Fully automatic and precise detection of thread safety

violations

This paper [67] describes a framework that detects data races, atomicity violations

and deadlocks. It consists of a test generator that generates and runs tests on different

threads to exercise the class under test (CUT). It records all test combinations that

result in the program deadlocking or generating an exception. Said deadlock or

exception is marked as real real when it cannot be triggered by any single threaded

sequence of calls.

The framework only detects bugs from one object by concurrently calling its meth-

ods. Multi-object bugs aren’t covered. Further, it only detects bugs when the program

deadlocks or generates an exception. As it is designed to work on Java programs, this

amounts to querying the Java virtual machine.

3.2.12 Grail: context-aware fixing of concurrency bugs

A Petri net is a graph with two types of nodes - places and transitions. It is similar

to control flow graphs except that transitions are nodes instead of edges. Program

execution is simulated on a Petri net by imagining that a token on the place node

represents the current statement being executed. For concurrent programs, multiple

Petri nets are used - one for each thread. The state of a Petri net (and thus the

program) is the position of all of the tokens at a given time.

Grail [55] is a framework that fixes data races, deadlocks and atomicity violations.

Unlike many other frameworks, Grail creates fixes that are both optimal, where each

added lock synchronizes the minimal amount of code, and correct, so that the sum of

local fixes won’t introduce any new bugs.

Like many approaches, it fixes bugs by adding additional locks. Input consists of

55

the program and bug reports in terms of the lines of code and memory states involved.

Grail models the program as a Petri net followed by modelling the bug(s) as a Petri

net as well. Mixed integer programming is used to find the constraints that transform

a faulty execution into a correct one. A framework called Supervision Based on Place

Invariants is then invoked to implement the fix. In evaluations, Grail outperforms

Axis and AFix by 40% or or more.

56

Chapter 4

CORE Framework

4.1 Introduction

This chapter describes the CORE framework and how it was evaluated. CORE’s bug

fixing algorithm (Section 4.2) is described in detail. This is followed by a discussion

on the way in which heuristic, search-based, bug fixing frameworks work (Section 4.3).

Finally we finish this chapter by describing how CORE was evaluated (Section 4.5).

4.2 The CORE Framework

CORE (COncurrent REpair framework) is a contribution to filling the gap in concur-

rent program repair. It is a search based software engineering application driven by

a genetic algorithm without crossover (GA¬C) that evolves fixes for deadlocks and

data races in concurrent Java programs. The relationships between the four instances

of the framework are shown in Figure 4.1.

The focus of the following sections is on explaining the inner working of CORE.

At a high level CORE divides the fixing process into 3 phases: analysis, repair and

57

Figure 4.1: Instances of the CORE framework. ARC is prior work. ARC-OPT,
CORE-MC and CORE-IMC are described and evaluated in this thesis.

CORE

ARC ARC-OPT CORE-MC CORE-IMC

Figure 4.2: High-level overview of the two phases of operation of the CORE frame-
work.

Buggy program

Bug fixing

Yes

No

Fixed program

Optimization

Fixed & optimized program

Tests

optimization (Figure 4.2). Work done during the analysis phase is critically important

to CORE’s success. This is where the search space is narrowed by finding the classes,

methods and variables used concurrently. After the analysis the GA¬C proper begins

its work. An outline of the GA¬C algorithm is in Figure 4.3. Optimizations added

to the different instances of the framework (ARC-OPT, CORE-MC and CORE-IMC)

are explained in their respective chapters. Only the base framework common to all

is detailed here.

58

Figure 4.3: The CORE framework uses an Evolutionary Strategy to fix data races
and deadlocks in Java programs.

Generate initial population

Mutate individuals

Evaluate individuals

Bug
fixed?

No

Yes

Gener.
left?

NoYes

Replace weakest individuals

Recalculate operator weighting

4.2.1 ConTest

Before describing the inner workings of the CORE framework, we make one detour

to describe the ConTest [24] thread noising tool. ConTest is a concurrent testing tool

that forces different thread interleavings to occur. When a program instrumented by

ConTest runs, the instrumentor makes calls to the noising heuristic module. This

module randomly delays the execution of the thread in questions, increasing the

chance that different thread interleavings will be executed. This variable threading

increases the chance that one or more tests will fail. ConTest can detect data races,

deadlocks and other exceptions.

ConTest has other features not used by CORE. These include simulating variable

network loads by using the same kind of noising technique, supporting parallel and

sequential coverage models and replaying previous tests for debugging and regression

support.

59

4.2.2 Genetic Algorithm Details

CORE is powered by a genetic algorithm without crossover (GA¬C). When ARC

was initially conceived - long before this thesis started - it wasn’t clear to the author

how to include crossover into the algorithm. If crossover occurred at an arbitrary

line of code, how is variable scoping and bracket matching maintained, for example.

Once this thesis was decided on, the emphasis was on tool integration, state space

constraint, code optimization and evaluation. Crossover wasn’t part of the goals of

the thesis (Section 1.2).

Genetic algorithms operate on a population of entities. In CORE, each member of

the population (its representation) consists of the source code to be mutated, along

with the details of the mutations applied and how successful each mutation was.

For example, a member of the population had an EXSA (EXpand Synchronization

block After) mutation applied in the first generation and ran successfully (bug free)

30 out of 50 times. The other 20 times a deadlock or data race occurred. In the

second generation, an ASAT (Add Synchronization Around a Statement) mutation

was applied and ran successfully 10 times out of 50. When CORE completed its

run, it left behind all of the mutants programs for each member for each generation.

Additional information including which mutation was applied and how many runs

succeeded for each member for each generation are recorded in the log file.

Fitness functions are used to determine how successful each mutant program is.

In CORE each program is scored in a range of 0 to 1000 points, in proportion to

the number of successful runs it achieves. For example, if 30 out of 50 ConTest

runs are successful, the score is 600. If 60 out of 80 are successful, the score is 750.

Fitness determined by model checking is similar. The score range is still 0 to 1000

and the score is determined by the search depth at which an error is first encountered

compared to the maximum search depth. For example, if an error is encountered at

60

a search depth of 40 and the maximum search depth is 50, the fitness score is 800.

4.2.3 Setup: Time-out Generation and Search Space Pruning

Before the main algorithm begins, the CORE framework determines the time-out

value and gathers targeting information. The target program is instrumented by

ConTest and is run a large number of times (usually 10 × 15 = 150 times.) to

determine its average running time. The average running time is multiplied by a

configurable value (say, by 4) to become the time-out interval for the run. Any

program run that exceeds this duration is stopped and recorded as deadlocked or

timed out based on the feedback it receives from the Java runtime. During this

process ConTest generates a list of classes and variables found to be used concurrently.

CORE uses this list to better target the concurrent sections of code.

Static analysis by Chord, analysis by JPF and function header scanning respec-

tively were added to ARC-OPT, CORE-MC and CORE-IMC and are described in

Sections 5.3.1, 6.2.1 and 7.3.

4.2.4 Generate Mutants

In the first step of Figure 4.3, the members of the population are created or updated.

During the first generation the incorrect program is copied into each member of the

GA¬Cs population. In later generations the program from the previous generation

for each member is used.

CORE works its way through each member of the population in turn. First, it

exhaustively generates all mutants for a member. Mutants are created by TXL [17]

scripts. TXL is a pattern matching and replacement language. The complete list of

operators used is in Table 4.1. Note that operators that create mutants may have

61

Table 4.1: Set of mutation operators used by the CORE framework.

Operator Description Acronym
Add a Synchronized block Around a sTatement ASAT
Add the Synchronized keyword In the Method header ASIM
Add a Synchronized block around the code in a Method ASM
Change the Synchronization order of two nested synch. blocks CSO
EXpand a Synchronized region down by one line (After) EXSA
EXpand a Synchronized region up by one line (Before) EXSB
Remove a Synchronized statement Around a Synchronized block RSAS
Remove Synchronization Around a line of code (Variable) RSAV
Remove Synchronized keyword In Method declaration RSIM
Remove a Synchronization block around the code in a Method RSM
SHrink Synchronization block by one line from the end (After) SHSA
SHrink Synchronization block by one line from the beginning (Be-
fore)

SHSB

Table 4.2: Using the Add Synchronization Around a Method (ASM) operator places
a synchronization block around all of the code in the method.

Before After

function DoPhysics {
pick up chalk
...

}

function DoPhysics {
synchronize(LockOne){

pick up chalk
...

}
}

multiple instantiations, depending on the class/method/variable targeting informa-

tion available. Tables 4.2, 4.3 and 4.4 show examples of how three of CORE’s

operators, ASM, EXSA and CSO, mutate code.

4.2.5 Mutate Individuals

After a member’s mutants are generated, the CORE framework selects a type of

mutation (e.g. EXSB) and then an instance of it (e.g. 4th mutant generated) from

those available. The program source is copied to the compilation directory followed

62

Table 4.3: The EXpand Synchronization After the block (EXSA) operator extends
the synchronization block down to encompass the next line of code.

Before After

function DoPhysics {
synchronize(LockOne){

pick up chalk
}
pick up eraser
...

}

function DoPhysics {
synchronize(LockOne){

pick up chalk
pick up eraser

}
...

}

Table 4.4: The Change Synchronization Order (CSO) operator flips the order of the
locking variables for two nested synchronization blocks.

Before After

function DoPhysics {
pick up chalk
synchronize(LockOne){

synchronize(LockTwo){
pick up eraser
...

}
}
...

}

function DoPhysics {
pick up chalk
synchronize(LockTwo){

synchronize(LockOne){
pick up eraser
...

}
}
...

}

by the mutant file. It is possible that the mutant isn’t valid. For example, a new

synchronization block could have been added that synchronizes on an out of scope

variable. CORE attempts to compile the project. If an error is detected, the mutation

is rolled back and another is selected. This continues until a successful compilation

occurs or CORE runs out of mutants. If CORE runs out of mutants it resets the

program to the previous generation, assigns a fitness of 0 and moves on to the next

member of the population. If a reset isn’t possible or if this problem occurs in the

first generation, CORE writes an entry to the log explaining this and exits.

63

4.2.6 Evaluate Individuals

Once a compilable mutant is created, it must be evaluated. The fitness score was

described in Section 4.2.2 above.

How do we assure ourselves that a proposed fix really fixes all of the known bugs?

For ARC and ARC-OPT, it is possible that a proposed solution could still contain

a bug in a thread interleaving that escaped detection. For CORE-MC and CORE-

IMC the bug could exist at a search depth deeper that the model checker explored.

To increase confidence in a fix, take the base number of ConTest runs and multiply

it by an additional safety factor. All proposed fixes are run through ConTest this

many more times to give us additional confidence that the fix works. This is done

for all versions of the framework. If a data race or deadlock is found during these

additional runs, the fix is rejected and the search continues. This continues until a

correct program is found or CORE runs out of generations.

4.2.7 Check Ending Condition

If any proposed fix passes the tests from the previous section, that member of the

population is declared correct and its program is written to the output directory for

the user. If no member program passes all test, the search continues until CORE

runs out of generations.

4.2.8 Replace Weakest Individuals

We believe the competent programmer hypothesis [2] applies when fixing concurrency

bugs. Programmers strive to create correct programs. Programs with bugs in them

are nearly correct so that the distance in the search space from an incorrect program

to a correct one is small and solvable. Even with a smaller search space, evolutionary

64

algorithms may evolve candidate solutions that stray down paths leading to little

or no improvement. In some cases the evolution may make the program worse. To

encourage members to explore the higher fitness parts of the state space there is an

option to restart or replace the lowest x percentage (say 10%) of individuals if they

perform poorly for too many generations. Two replacement strategies are used. First,

the member is replaced by a random individual from the upper y (say 25%) percent

of the population. Second, the member is replaced by the original incorrect program.

4.2.9 Recalculate Operator Weighting

CORE leverages historical information on how successful different mutation operators

have been and about the relative dominance of data races versus deadlocks. Opera-

tors raising the fitness of the population or reducing the frequency1 of data races or

deadlocks are given additional weight in the selection process. This weighting never

reduces the selection chance to zero. There is separate weighting for each bug type

(deadlock fixing and data race fixing) within which the relative success of operators is

recorded. Heuristic searches are dynamic. A successful operator at the beginning of

a search may become detrimental at the end. To avoid this, a sliding window of the

previous n generations is used to adapt weightings to what has happened recently.

4.2.10 Example

With ICHEP2 rapidly approaching our working physicists decide to evolve a solution

to their chalk grabbing difficulties. After rolling numerous dice they create Table 4.5.

It shows one evolutionary path to the fix, focusing on constructive steps for clarity.

1For example, if EXSB reduces the occurrence of deadlocks from 80 of 100 ConTest runs to (say)
60 of 100 runs, it will be selected more frequently in future generations to combat deadlocks.

2International Conference on High Energy Physics

65

Table 4.5: Evolving a fix for the working physicists deadlock in CORE. The original
code is in the left column. A mutant that doesn’t improve fitness is in the middle
column. By expanding the synchronized region up one line a fix is found in the right
column.

Original Partial Fix Full Fix

Add synch. around
statement

Expand synch. before

function DoPhysics {
pick up chalk
pick up eraser
write
put down eraser
put down chalk

}

function DoPhysics {
pick up chalk
synchronize (eraser){

pick up eraser
}
write
put down eraser
put down chalk

}

function DoPhysics {
synchronize (eraser){

pick up chalk
pick up eraser

}
write
put down eraser
put down chalk

}

On the left is the original pseudo-code. In the middle column the Add Synchroniza-

tion Around Statement (ASAT) operator is applied to a random statement. CORE

considers all statements containing concurrent variables. Any concurrent variable

could be a lock a developer created but didn’t use. As mutations are simple single

steps, synchronizing this statement is a valid mutation.

Observe that the mutation leading to the middle column doesn’t affect the bug

at all. It still appears as frequently as in the left column. Both columns have the

same fitness. We keep this mutation because it increases the diversity of the popula-

tion. Quoting [72]: “... neutral mutations that leave fitness unchanged are considered

to be beneficial – improving the system’s robustness and its ability to discover evo-

lutionary improvements.” This has an analogy in nature: One mutation by itself

may do nothing. In cooperation with a second (or third, ...) they could become

beneficial or destructive. In this example the mutation is beneficial. Expanding the

synchronization block upward by one statement (last column) creates a fix for the

66

Table 4.6: Evolving optimizations for the deadlock fix found by CORE. The fix found
in the left column is to synchronize all of the code. It works but serializes the code.
An attempted optimization in the middle column reintroduces the deadlock, so it is
rejected. In the right column the synchronize block is shrunk by two lines, leading to
a better (but not optimal) solution.

Evolved Fix
Optimization creating
a deadlock

Successful
Optimization

Add synch. around a
method

Shrink synch. before
Shrink synch. after
-Applied twice

function DoPhysics {
synchronize(chalk) {

pick up chalk
pick up eraser
write
put down eraser
put down chalk

}
}

function DoPhysics {
pick up chalk
synchronize(chalk) {

pick up eraser
write
put down eraser
put down chalk

}
}

function DoPhysics {
synchronize(chalk) {

pick up chalk
pick up eraser
write

}
put down eraser
put down chalk

}

deadlock.

As CORE adds, grows and reorders concurrent blocks, it could add unnecessary

synchronization. These blocks hurt performance by serializing code that should be

running concurrently. Phase 2 attempts to fix this by evolving the program to opti-

mize efficiency. It uses a different set of operators specialized to shrink and remove

concurrency blocks. A different fitness function is used. It derives a score based on

execution time and the number of voluntary context switches3. Lower numbers in

both lead to higher scores.

Table 4.6 demonstrates how a fix found in the bug fixing phase4 is optimized. In

the left column is the fix from the first phase. An optimization is applied that rein-

troduces a deadlock in the center column. This can happen when the synchronization

3A voluntary context switch can occur when a thread of execution must wait on a lock. It gives
up it’s remaining time on the processor to another thread.

4Intentionally different from the fix found in table 4.5.

67

blocks are shrunk or removed. For every proposed optimization CORE must check

for the reintroduction of deadlocks and data races. This is done the same way as in

the fixing phase. CORE rejects the proposed optimization in the middle column. The

right column contains the final solution found by CORE. Note that it isn’t perfect5.

Once again we emphasize that heuristic search is not guaranteed to find the optimal

solution. CORE found a good enough solution for eliminating the bug. Running

CORE a second, third or fourth time might produce a better solution. Alternatively,

comments written by CORE in the source code (not shown for brevity) could help a

developer optimize the fix by hand.

Note that CORE isn’t designed to fix gross misunderstandings of concurrency.

We assume the competent programmer hypothesis. When concurrency is missing, for

example, or the code contains conceptual errors, CORE isn’t able to fix it.

4.3 COREs Search Strategy

With the framework explained in depth, we spend this section comparing and con-

trasting CORE’s approach to other frameworks that suppress or fix bugs in both

sequential and multi-threaded programs. First we look at GenProg [49]. It is a well

known and successful framework for the automatic fixing of sequential bugs in pro-

grams. We contrast it with RSRepair [69] and discuss how the decisions made to

constrain the search space affect their performances (Section 4.3.1). In the following

sections we look more in-depth at frameworks that find, suppress or fix parallel bugs,

AtomAid [59], AtomRace [53], Falcon [66] and AFix [40] (Section ??) and compare

and contrast them with the CORE framework.

5Write could be removed from the synchronize block.

68

Table 4.7: Average generation a fix was found for the test programs from the papers
written on GenProg.

Paper Year
Average
Gen.

A GP Approach to Automated Software
Repair

2009 3.6

Automatic, Efficient and General Repair of
Software Defects Using Lightweight Analysis

2010 2.1

Automated Program Repair through the
Evolution of Assembly Code

2010 1.6

Automatic Program Repair with
Evolutionary Computation

2010 2

GenProg: A Generic Method for Automatic
Software Repair

2011 1.8

4.3.1 Does Heuristic Search Make a Difference?

Does genetic programming work well on automated program repair? This is the

question posed by a recent paper [69]. Specifically, does the genetic programming

approach used in the current state of the art in single threaded program repair, Gen-

Prog [49], do better than random? The authors of [69] conducted a study where they

duplicated GenProg but removed fitness-based selection and replaced it with random

selection. Overall their framework, RSRepair (Random Search Repair?) performed

better than GenProg. RSRepair fixed more bugs and was faster.

A careful analysis of an earlier version of GenProg [50] revealed that randomly

constructed patches fixed 62% of the programs used in the paper6. That is, the fix

for the program was found in GenProg’s initial randomly generated population more

than half of the time. Twenty percent of fixes were found after one generation of the

evolutionary process, 6% after two and the rest after more.

On average the fix is found in the randomly created population before any genetic

6Critical analysis of a paper for the 5010 course from 2011, unpublished.

69

Figure 4.4: There is no relationship between the generation of a fix and the size of
the programs in lines of code in [50].

programming techniques are applied or after one generation of the search. This

observation applies to most of the GenProg related papers and is shown in Table 4.77.

GenProgs creators are aware of this issue:

“One concern about our results to date is the role of evolution. Most of our

repairs result from one or two random modifications to the program, and

they are often found within the first few generations or occasionally, not

at all. We have conducted some experiments using a brute force algorithm

. . . and random search Both these simpler alternatives perform as well

or better than the GP on many, but not all, of our benchmark programs.

. . . However, thus far GP outperforms the other two search strategies in

cases where the weighted path is long” [87]

7Many programs are reused from one paper to another.

70

Figure 4.5: There is no relationship between the generation of a fix and the critical
path size of the programs in [50].

Further analysis of [50] turned up two more interesting facts.

1. Figure 4.4 shows there is no relationship (R2 = 0.2) between the generation

a fix was found in and the program size in lines of code. In other words, big

programs are not harder to fix.

2. Figure 4.5 shows there is also no relationship (R2 = 0.2) between the generation

the fix was found in and the size of the critical execution path (weighted path)

containing the bug.

GenProg and RSRepair operate in a similar way - they stop as soon as they fix

one bug. For the programs in [49, 69] each has between 2 and 44 bugs and each has

between 70 and 8000 test cases. On average each bug has roughly 100 test cases.

71

Test cases consist of both positive tests preserving existing functionality and negative

tests demonstrating the bugs to be fixed. Presumably most tests preserve existing

functionality8. Every member is tested against 10% of the relevant tests9. Full testing

is only invoked when this subset is passed.

In GenProg, fitness is based on the total number of tests passed, with negative

tests having twice the weight of positive tests. It may be the case that GenProg

is preferentially selecting mediocre programs. A fix may require changes that harm

functionality protected by the positive test cases. When this happens the program

receives a lower score. When many tests are concentrated in a small area, it is possible

that one change will cause many of the positive tests to fail. Contrast this with the

principle that mutational diversity is a good thing. This change (insertion, deletion,

...) may be a necessary for a fix in a future generation. But, due to the lower fitness

GenProg will selectively remove this diversity - the lower scoring mutant - from the

population. RSRepair won’t. It is impartial to decreases in fitness leading to increased

diversity. This may explain why RSRepair does better.

For GenProg and RSRepair there is a rough relationship between the number of

bugs in a program and the fix rate. At 44 bugs the chance of finding a fix for one10

bug is 100%. When the number of bugs shrinks to 2, success drops to 7 or 13%.

(R2 is 0.57 for GenProg and 0.35 for RSRepair.) As the program is almost correct

and has many positive tests, GenProg and RSRepair start at or near a local fitness

optima that must be escaped. When there are many bugs it is likely that one random

change will fix one of them and complete the algorithm. Conversely, when there are

few bugs, these algorithms flounder because they have to ‘get lucky’ to target the

8No information is given on the counts of positive and negative tests.
9An optimization used by both GenProg and RSRepair.

10Both GenProg and RSRepair declare success after fixing one bug, regardless of how many there
are in the program.

72

areas at and around the bugs. Once they do, the change made could cause multiple

positive tests to fail. These members lose fitness and are preferentially selected out

of the population.

GenProg’s goal is to fix all kinds of bugs. Casting a wide net constrains how it

can attack the problem. In this sense the use of fitness based selection might harm

mutational diversity and its ability to search the space of program fixes to find a

solution.

4.3.2 CORE’s Search Strategy

CORE is similar to GenProg and RSRepair in that it often finds fixes for deadlocks

and data races within the first generation. This suggests that the difficulty of the

repair problem is to a great extent defined by the constraints of the approach. They

determine what is fixable and the search space of the problem. If the constraints are

reasonable, then the bug fixing process could be ‘easy’. When the search space is

defined, the algorithmic implementation determines reachability and efficiency.

This thesis attempted to tackle both aspects of the problem as the CORE frame-

work was developed. In terms of constraints, more analyses were added to find the

classes, methods and variables used concurrently. Efficiency was improved by reduc-

ing the amount of work that the framework had to do to a minimum by removing

incorrect mutants and curbing the number of uncompilable programs, amongst others.

4.4 Synchronizing Run()

In the evaluation that follows, 4 programs were fixed by synchronizing the run()

method. This has the undesirable side-effect of turning the parallel program into

a serial one. As this defeats the purpose of parallelizing the program in the first

73

Figure 4.6: In the Account program, the transfer method can lose updates because
of a lack of synchronization on the ac variable.

synchronized void t r a n s f e r (Account ac , double mn){

amount−=mn;
ac . amount+=mn;

}

Figure 4.7: In the Account program, synchronizing ac in the transfer method fixes
the data race.

synchronized void t r a n s f e r (Account ac , double mn){
amount−=mn;
synchronized (ac) {

ac . amount+=mn;

}
}

place we investigated why this occurred and what additional steps could be taken to

find fixes that maintain parallelism. CORE applies syntactic changes to the source

by modifying synchronize() statements. It is not designed to apply template-like

transformations. In this way, synchronizing run() is a perfectly valid mutation. As a

first step, a configurable toggle was added to exclude run() from being synchronized.

When this was done, CORE couldn’t find fixes for the Account, Airline and Lottery

programs11.

CORE relies on its tools to find the classes, methods and variables used concur-

rently. Primitive types are removed from the variables list, leaving legal synchroniz-

able objects. Account is an example of a program in which ConTest and Chord find

the proper method to synchronize, transfer, but not the variable, ac (Figure 4.6).

After adding the ability to find the variables declared in function definitions in CORE-

11One of the fixes found for PingPong and Deadlock was to synchronize run(). They are still
fixable when run() was excluded, as other methods can be synchronized.

74

Figure 4.8: In the Airline program, all of the parallel code is in the run() method.
All of the variables used in run() are primitive types.

public void run () {

Num Of Seats Sold++;

i f (Num Of Seats Sold > Maximum Capacity)
StopSa les = true ;

}

IMC, CORE could fix Account again without synchronizing run() (Figure 4.7) (See

Section 7.2).

For Airline, the parallel code is all contained within run (Figure 4.8). It uses only

primitive variables, while run itself has no parameters. The analysis step correctly

reports that no (synchronizable) variables are found and that only the run method

is used concurrently. CORE finds the only fix possible - synchronizing run.

In Lottery three methods race on the randomNumber variable (Figure 4.9). The

analysis tools find synchronizable variables, but not all of the synchronizable methods.

They find only that the generate method is used concurrently. Without the present

and recordmethods, all of the lines racing on randomNumber cannot be synchronized

to fix the data race. None of the three methods receive arguments, so searching for

them is of no help. With incomplete information, CORE finds the only fix it can -

synchronizing run. This problem is in part a limitation of the tools used. Different

analysis tools (static, dynamic, ...) could find the other two methods. Even then

CORE would still have some difficulty because the lines in the three methods must

synchronize on the same lock. Currently CORE randomly selects a lock for each

added synchronize statement.

One lesson learned from this is that well structured programs are more likely to

be fixed by the CORE framework. Programs that properly delegate functionality to

75

methods and encapsulate data as arguments to these methods are more likely to be

fixable. An example of this is the Account program. Counter-examples include the

Airline and Lottery programs. Airline uses only primitive types and is run from the

constructor. In Lottery the functions don’t accept any arguments. Programs that use

non-primitive variables are also more likely to be fixed. Airline is an counter-example

of a program that only uses primitive types.

4.5 Evaluating CORE

There is a large amount of scholarly work on finding and suppressing concurrent bugs.

One would think it is easy to assemble a suite of Java programs with data races or

deadlocks to test against CORE. In reality it is difficult. Even existing benchmarks

from the concurrent bug finding/suppressing/fixing literature aren’t of much help.

Java Grande12 for example, is a suite of benchmarks “measuring and comparing

alternative Java execution environments in ways which are important to Grande ap-

plications.” Of interest was the multi-threaded benchmark. It contains parallel Java

programs moldyn, monte-carlo and raytracer. These have been studied extensively

in the parallel bug detection literature [39, 42, 66, 68, 73]. However, good for bug de-

tection doesn’t equate to good for bug fixing. The Java Grande approach was to

take a single threaded program and run it on many threads. Predictably there are

bugs. One such bug occurs when different threads access the same statically declared

object without locking. Java Grande programs fall under the ‘gross misunderstanding

of concurrency’ category as the programs were not written with parallelization as a

goal. CORE is not designed to fix them. In other candidate programs the data races

detected are benign. As there is nothing wrong with the program, there is no test

12http://www2.epcc.ed.ac.uk/computing/research activities/java grande/index 1.html

76

Table 4.8: The set of programs in the benchmark used to evaluate CORE.

Program
Lines
of
Code

Bug
Type

Can Fix?

Account 165 Data race Yes
Account
sub-type

209
Data race,
deadlock

Yes

Accounts 75 Data race Yes
Airline 931 Data race Yes
Bubblesort2 104 Data race Yes
Buffer 319 Data race No
Deadlock 109 Deadlock Yes
Linked list 243 Data race Yes
Lottery 157 Data race Yes
Pingpong 143 Data race Yes
Readers Writers 170 Data race Yes
Cache4j 2706 Data race No
String buffer 1278 Data race No
Travelling sales 702 Data race No

case to demonstrate the non-existent problem and nothing to fix.

In order to evaluate CORE, a number of programs were selected from different

sources: eight programs from the IBM Concurrency Benchmark [26], 2 from pjbench13

(Cache4j and TSP), a benchmark created by the Program Analysis Group at Georgia

Tech14 and one (StringBuffer) from the CalFuzzer [42] benchmark. Programs were

also downloaded from the Software-Artifact Infrastructure Repository [20]. For the

IBM benchmark we chose 6 programs containing bugs CORE can fix and 2 CORE

cannot as a sanity check. Their properties are summarized in Tables 4.8, 4.9 and 4.10.

CORE is designed to be flexible. Table 4.11 describes the configuration options

and values used in our evaluation. Parameters were not optimized by project in the

benchmark. Standard values used in the literature were identified and incorporated.

13http://code.google.com/p/pjbench/, retrieved April 2013
14http://pag.gatech.edu/software, retrieved April 2013

77

Table 4.9: Class, method and variable counts of the benchmark programs.

Program # Classes # Methods # Variables
Account 3 8 9
Account sub-type 6 19 16
Accounts 2 5 9
Airline 1 3 8
Bubblesort2 2 3 4
Buffer 5 22 47
Deadlock 2 10 8
Linked list 5 22 26
Lottery 2 8 8
Pingpong 4 13 9
Readers writers 6 17 16
Cache4j 20 46 133
String buffer 1 20 4
Travelling sales 4 17 35

In the following subsections each program and their concurrent bug are described.

Source listings of the bugs and the fixes found by CORE are deferred to Appendix 1.

Account

The Account program simulates transactions at a bank. Transactions are run on

threads representing customer bank accounts. These customer threads contain a

data race between the transfer, depsite (sic) and withdraw methods, all of which

are called from the threads run method. During execution, account thread i invokes

the transfer method of account i + 1. On the next iteration of the loop, thread i + 1

invokes depsite and withdraw. Because of a lack of synchronization, the transfer can

be overwritten by the depsite or withdrawal method calls. In plainer language, $99

is deducted from sender i, but isn’t received by the receiver i+ 1 as it is overwritten

by the deposit of $300 or the withdrawal of $100.

CORE consistently fixed Account by synchronizing the run method. After adding

78

Table 4.10: Concurrent properties of the benchmark programs.

Program
Critical
Regions

% of Statements
in Critical Regions

Threads

Account 3 2.4 10
Account
sub-type

6 3.8 11

Accounts 2 5.3 10 - 110
Airline 0 0 100
Bubblesort2 2 17.3 1000
Buffer 5 12.5 24
Deadlock 4 25.7 15
Linked list 2 3 2
Lottery 4 9.6 333
Pingpong 5 11.2 120
Readers writers 16 9 4
Cache4j 31 3.7 4
String buffer 24 16 2
Travelling sales 6 25 2

the ability to scan function definitions for synchronizable variables and excluding run,

CORE was able to fix Account by synchronizing lines in the transfer method.

Account Sub-Type

Account Sub-Type [23] is a modification of the Account program. In it an abstract

class represents a basic account object. Two child types were created: business and

personal accounts. In the Business.transfer method the transfer was properly syn-

chronized while Personal.transfer was not. As with Account above, the lack of

synchronization on Personal.transfer caused a data race between the transfer,

deposite and withdraw methods. CORE fixed it the same way it fixed Account - by

synchronizing within the Personal.transfer method.

This wasn’t the end of the story though. After fixing the data race from

Personal.transfer, the JPF model checker found a deadlock where ConTest didn’t.

79

Table 4.11: The set of parameters that CORE uses along with their descriptions and
values.

Parameter Description Value
Runs How many times each program is run 30
Search depth How deep the model checker searches 50
ConTest Runs Test suite executions per gen. per member 15

Validation Mult.
Multiplier on ConTest runs when validating
potentially correct programs

10

Timeout Mult. Time multiplier on program before timeout 10
Generations Maximum number of generations of the GA¬C 30
Population Population size for the GA¬C 30
Replace Lowest % Lowest n% of population replaced in GA¬C 10

Replace With Best %
Replace under-perfomers with best individuals
n% of the time

75

Replace min turns Minimum time under-performing 3

Replace Interval
Every n generations, under-performers are re-
placed

5

Ranking Window Size of sliding window for operator weighting 5
Success Weight Fitness score for successful executions 100%
Timeout Weight Fitness score for timeout executions 50%
Improv. Window Number of generations to consider for convergence 10
Avg. Fit. Delta Minimum average fitness improvement required 0.01
Best Fit. Delta Minimum best fitness improvement required 1

JPF reported that the account.transfer method calls for personal and business ac-

counts in Manager.run deadlocked. Account N calls transfer. First it locks itself

then it attempts to lock account N+1. At the same time account N+1 calls transfer

to lock itself and then lock object N+2 and so on. JPF detects a deadlock because

each account can be in transfer leading to a circular deadlock.

The only way to fix this bug is to serialize access to transfer. Both calls to

transfer in run must be synchronized on a global lock, and depending on the muta-

tions, the same global lock. This is a hard fix for CORE to find. Synchronizing run

(if allowed in the configuration file) also fixes the bug - at the cost of parallelism.

80

Accounts

Accounts simulates a bank by performing transactions on many threads. It maintains

an overall sum of the amount of funds transferred in a globally declared Bank Total

variable. Account threads have unrestricted access to the global balance leading to

data races. These threads access the global sum through the service method. In run

an account repeatedly adds a random amount to a balance and the global running

sum. Multiple threads race on Bank Total causing the global sum to disagree with

the sum of individual account balances. CORE finds multiple fixes. The optimal one

is to synchronize the Bank Total line in the Service method. A less optimal fix is to

synchronize both lines in the Service method or synchronize the method itself.

Airline

Airline is a threaded ticket sales simulator for airlines. It uses a class level variable to

keep track of the number of seats sold on an aeroplane. Sales stop when the number

of tickets sold is equal to the aircraft capacity. This programs has a race on the

Num Of Seats Sold and StopSales variables between the main body of code and

the run methods of the ticket sellers. One or more seats can be sold past the capacity

of the aeroplane on different threads after StopSales is set to true.

Initially Airline was classified as unfixable by ARC. After reviewing it again for

this thesis it was clear that it should be fixable by ARC-OPT. Sadly, ARC-OPT

couldn’t fix airline either, but both CORE-MC and CORE-IMC could. The cause of

ARCs failure to fix airline was traced to the fact that all of the concurrent variables

discovered by the analyses were of primitive types. Java doesn’t allow synchronization

on primitive types, so the mutants generated by both ARCs didn’t compile. Both

ARC and ARC-OPT generated 173 ASAT (Add Synchronization Around sTatement)

mutants using primitive types as the locking variables, 15 ASM (Add Synchronization

81

around a Method) mutants, again using primitives for locking variables and 3 ASIM

(Add Synchronization In Method header) mutants. Of the 191 mutants available,

only 2 of the ASIM mutants created compilable programs15. ARC and ARC-OPT

both failed to fix Airline for two linked reasons. First, 189 of the 191 mutants didn’t

compile. Second, there was a bug in both ARCs that caused them not to consider the

ASIM mutants. If ARC or ARC-OPT could never chose an ASIM mutant, they could

never create a compilable program and never find a fix. This is important because

one of the ASIM mutants did fix the bug.

During the development of the COREs, this ASIM selection bug was fixed. Now

both CORE and CORE-INC can fix Airline. One of the features added to the frame-

work was the elimination of primitive types from the list of synchronizable variables

- which was all of them. No ASAT or ASM mutants were generated- only ASIM. As

described above, the only possible fix was to synchronize the run method.

Bubblesort2

Bubblesort2 parallellizes the bubblesort algorithm. It contains a data race on the

globally declared array variable array. The algorithm creates new threads to perform

the swapping in the sort. All of these swapping calls go through the swpArray

method. This call only has synchronization within the object but not between objects.

Multiple objects can be in swpArray, simultaneously making changes to the global

array and causing data races. CORE fixes the data race by locking array accesses on

the array variable.

15One ASIM mutant attempted to synchronize the constructor, so only 2 of them compiled.

82

Deadlock

The working physicist deadlock is implemented in the deadlock program in terms of

file copying from A to B and B to A simultaneously. The write method of each thread

attempts to lock the source file, then the destination file in turn. If two threads each

lock their source file the program deadlocks. CORE’s fix is to synchronize access to

the write method. Other fixes CORE found include synchronizing access to write in

run and synchronizing all of run. Note that to fix this program it must be serialized.

Lottery

As described in the previous section, because the analysis only determines that the

generate function is used concurrently, while missing the present and recordmethods,

the only fix CORE can find is to serialize access to the conflicting methods in run().

Pingpong

In Pingpong there is a class level variable called pingPongP layer accessed by all

threads. Every thread calls the ping method that in turn calls pingPong. In it the

pingPongP layer variable is set to null for 50 milliseconds. A different thread trying

to call pingPongP layer.getI() during this 50 milliseconds generates a

NullPointerException. CORE fixed this program by synchronizing any method in

the chain of calls - pingPong, ping, or run.

Linked List

Linked List is a concurrent implementation of a linked list. It has a data race in the

insert method. The last line of code, p. current. next = ... can be raced on, causing

random linking within the list. The fix is to extend the synchronized(this) block

83

down one line to properly synchronize the method. Other fixes CORE found include

synchronizing more or all of the lines in the method.

Readers-Writers

Readers-Writers is a concurrent implementation of readers and writers operating on a

common pool. It has a data race between the readers and writers. Sometimes a reader

can be active when a writer is writing. When this occurs, the beforeRead method

throws a java.lang.IllegalMonitorStateException). The fix is to synchronize the

beforeRead method.

Buffer

Buffer has multiple readers consuming from and writers writing to a buffer. It contains

a notify vs notify all bug. If a buffer is full (resp. empty) and a writer (reader) notifies

another writer (reader), nothing happens and the program deadlocks. If notifyall

had been called instead, a reader thread (writer thread) would activate to consume

some content from the full buffer (write some content to the empty buffer). CORE

wasn’t designed to fix notify vs notifyall bugs so it cannot fix this program.

Cache4j

Cache4j16 is an in-memory cache for Java objects. Different bug detection research

papers have different things to say about Cache4j. In one [65] it has a benign atomicity

violation. In another [73] a race over the sleep field in CacheCleaner.java was found

leading to an uncaught exception. If sleep is set to true and followed by a context

switch to another thread, an uncaught InterruptedException is thrown causing the

second thread to crash.

16Cache4j, http://cache4j.sourceforge.net/

84

CORE is unable to fix Cache4j.

StringBuffer

StringBuffer is a modifiable string object in the java.lang package. It contains a

data race on the count variable in all methods that use it. It occurs very rarely

– on the order of 1 in 6000 ConTest runs17. When it occurs StringBuffer crashes

and throws a StringIndexOutOfBoundsException. As CORE uses ConTest, it cannot

demonstrate the bug with any regularity causing it to erroneously report the original

buggy program as ‘fixed’.

Model checking in CORE-MC and CORE-IMC cannot fix the race either. It can

improve the search depth at which the model checker finds the bug though. For

example, the search depth was improved from 22 to 38 over the course of a run. This

suggests the bug will occur less frequently. There are two reasons to be sceptical

of this result. First, the data race already occurs rarely. Improving this from 1 in

6000 to 1 in 10000 (say) only makes the bug harder to find. Second, even removing

synchronization from functions can improve the search depth! For StringBuffer there

isn’t a clear correlation between higher search depth and the StringBuffer class being

more correct.

The underlying problem in StringBuffer is a complete lack of synchronization at

the statement level. Only methods are synchronized. Two different methods can race

on any shared variable. This complete lack of statement level synchronization is a

gross misunderstanding of concurrency that CORE cannot fix.

17The author has seen this exception occur only once.

85

Travelling Salesperson (TSP)

Once again different papers had different things to say about this implementation of

the travelling salesperson algorithm. One detection method [66] stated that the data

races in TSP were benign. Another found both benign data races and malignant ones

that “... involved updates that could be lost, leading to incorrect results” [85]. There

was no specific information on where the bug was or how frequently it occurred when

found.

TSP is similar to StringBuffer in that the data race appears infrequently. Where

most programs are noised by contest 15 times, it was necessary to noise TSP over

1000 times for every member for every generation for ConTest to expose the bug

with any regularity. On top of the rarity of the data race, TSP times out on average

once every 300 runs. Timeouts appear about 3× more commonly than the data race,

when the timeout is set to 20× the average running time of the program. (The default

timeout value is 4 times the average running time of the program.) This results in

every potential fix being declared incorrect because a timeout is considered incorrect.

In practice ARC and ARC-OPT run until the large number of ConTest runs causes

the framework to crash. These timeouts could hide a correct program. Sadly CORE

does no better. Java Path Finder is unable to model-check TSP. Overall, the CORE

framework cannot fix TSP.

86

Figure 4.9: In the Lottery program the methods generate, present and record race on
the class level variable randomNumber.

public void run () {

int i = 0 ;
while (i != numOfUsers) {

generate () ;
for (i = 0 ; i < numOfUsers ; i ++) {

i f (h i s t o r y [i] == randomNumber) break ;
}

}

pre sent () ;
r ecord () ;

}

protected synchronized void generate () {
generated [userNumber] = randomNumber = (long) (Math . random

()

∗ Math . pow (10 , MAX DIGITS)) ;
}

protected synchronized void pre sent () {
System . out . p r i n t (” user ” + userNumber + ” as s i gned ” +

(presented [userNumber] = randomNumber) + ” . ”) ;
}

protected synchronized void record () {
h i s t o r y [userNumber] = randomNumber ;

}

87

Chapter 5

ARC and ARC-OPT

5.1 Introduction

In this chapter we examine the development of ARC and ARC-OPT in Section 5.2.

What differentiates them most strongly is the addition of static analysis and the

software optimizations added to ARC-OPT described in Section 5.3. Both versions

of the framework are evaluated in Section 5.4.

5.2 ARC and ARC-OPT

ARC was successful enough to be written up as a paper [43] accepted by MUSEPAT’13,

the International Conference on Multicore Software Engineering, Performance, and

Tools. That paper was the basis of the previous chapter. Once this thesis was de-

cided on, the first step was to generalize ARC into the CORE framework. Numerous

optimizations and bug fixes were incorporated - enough to separate MUSEPAT’13

ARC from what came after, ARC-OPT. These optimizations are described in detail

in Section 5.3.

88

Optimizations and bug-fixes alone are not enough to distinguish ARC from ARC-

OPT. What makes the distinction clear is the addition of the static analysis of the

program to be fixed to the CORE framework and thus ARC-OPT, CORE-MC and

all future versions. Static analysis is the automated analysis of the source code. The

source is analysed to determine the classes, methods and variables used concurrently.

With this information, the search for fixes for deadlocks and data races is more

focused on the lines of code used concurrently. Note that the static analysis allows

the framework to better target the code used concurrently, but not the code specific

to the bugs. Attempting to target the execution path containing the bugs requires

some form of dynamic analysis - which CORE doesn’t do. The static analysis is

described in greater detail in Section 5.3.1.

All of these changes had a large impact on the performance of ARC-OPT. ARC

took on average 34 minutes to fix the programs in Table 5.3. ARC-OPT fixes the

same programs in an average of 13 minutes.

5.2.1 Summary

Recall that ARC was described in detail in Chapter 4. This section provides a sum-

mary of it.

ARC is a framework for fixing data races and deadlocks in concurrent Java pro-

grams. It can only fix known bugs demonstratable by test cases. An analysis per-

formed by ConTest determines the classes and variables used concurrently. The search

space of potential fixes is narrowed as ARC focuses only on those lines of code con-

taining variables identified by ConTest.

ARC uses a genetic algorithm without crossover (GA¬C) to perform the search.

ARC instruments the program with the ConTest thread noising tool and runs it a set

number of times, recording the number of successes, data races and deadlocks. Every

89

member of the GA¬C population is repeatedly noised and is given a higher score for

every ConTest run that doesn’t demonstrate a deadlock or data race.

Changes to the population are introduced by mutation. All mutants are exhaus-

tively generated for a member of the population for all applicable mutant operators.

Once this is completed a mutant is chosen to be applied to the member of the popu-

lation. First, a type of mutation and a member of that group is selected, for example

the 14th ASAT (Add Synchronization Around a sTatement operator) mutant. This

mutant is copied into the project. If the program doesn’t compile, a different mu-

tant is selected. Once a compilable program is generated it is repeatedly noised by

ConTest to expose and exercise different interleavings. This mutant program scores

higher for each run that doesn’t expose a deadlock or data race. If a program passes

all runs (15) for example, the program is executed by ConTest a larger number of

times (10×15 = 150 runs) to give us confidence the fix is a good one. If this larger

number of runs succeeds, ARC copies the fixed program to the output directory and

ends.

This process of mutation followed by evaluation continues until a correct program

is found or the GA¬C runs out of generations. The GA¬C is a stochastic or guided

random search. Every time the framework is invoked, the search will give different

results. CORE isn’t guaranteed to succeed if a fix is possible and it isn’t guaranteed

to produce the optimum fix. When a fix is found, the documentation inserted into

the source can help guide a programmer to a better fix, if one is possible.

5.2.2 Limitations

We assume the competent programmer hypothesis - competent programmers strive

to create correct programs. Bugs are manageable deviations from correctness. By

assuming competence, we reason that the fix is a reasonable distance away in the

90

search space. Expressed another way, the distance from ‘here’ (the bug) to ‘there’

(the fix) is manageable enough that CORE has a chance of finding the path connecting

them. Gross misunderstandings of concurrency (such as completely forgetting to add

it) is not fixable by CORE.

CORE is designed to fix deadlocks and data races. It does so by manipulating

synchronize(. . .) statements. These manipulations include adding, removing, grow-

ing and shrinking synchronization blocks, changing the locking variable within one

and swapping variables within two nested synchronize blocks. Only bugs fixable by

these operations can be improved upon. Other kinds of bugs, like notify vs notify

all, cannot be fixed because the operators needed to insert, remove and manipulate

notify events don’t exist.

Like other search-based approaches, CORE cannot fix unknown bugs. A test case

must exist to demonstrate the data race or deadlock in question. Bugs must also

be consistently demonstratable. A class like StringBuffer isn’t fixable when the data

race shows up once in roughly 6,000 ConTest runs1.

5.3 Software Engineering Optimizations

Numerous optimizations were added to the CORE framework during the development

of ARC-OPT. Most are based on experience gained using the original ARC.

A very simple optimization was developed from the observation that all members

of the GA¬C population have the same mutants in the first generation. Each member

mutates the base program. Effort is saved by mutating the program once for the first

member of the population and then copying the mutants to the other N-1 members.

CORE uses a base number of ConTest runs (usually 15) to determine if a program

1CORE breaks for some unknown reason when the number of back to back ConTest runs goes
over roughly 1,000.

91

still has data races or deadlocks. If no bugs are found, the base number of runs is

multiplied by a security factor (usually 10). ConTest is run this many more times

(15× 10 = 150) to see if the proposed fix is a good one. ARC used this large number

of runs (150) to determine the timeout value for the program. In practice, this many

runs was found to be unnecessary. In ARC-OPT (and all future versions), the number

of runs to determine the timeout was lowered to a flat 20 runs.

ARC exhaustively generated all mutants for every member of the GA¬C popu-

lation before it created and evaluated mutant projects. If the Xth member of the

population fixes all bugs, the generation of mutants for members X+1, . . . was unnec-

essary. ARC-OPT improved on this by generating all mutants for a member, then

immediately creating and evaluating its mutated project. In ARC the bug-free veri-

fication step ran for the full number of ConTest runs (say, 150). Even if a bug was

found on the first run the next 149 runs were still executed. An obvious optimization

for ARC-OPT was to stop as soon as the first ConTest run failed.

It is possible that ARC will generate the same mutant project more than once over

the course of a bug fixing run. Evaluating a repeat mutant is unnecessary if we record

the identity of the mutant along with the results of the evaluation. When a particular

mutant project is encountered again, the evaluation is copied into the new project.

ARC-OPT adds this capability to CORE by recording a hash of the archived source

and associating it with the testing results. ARC could only handle projects where

the source code was in a single directory. This was an oversight resulting from testing

only the IBM benchmark programs. ARC-OPT lifted this restriction by properly

generating and using mutants for all source files within a source tree.

92

5.3.1 Static Analysis

Static analysis of the source code was the biggest feature added to the CORE frame-

work during the development of ARC-OPT. Chord2 was selected due to its familiarity

and the ease of extracting the list of concurrently used classes, methods and variables

it generates. In data race finding mode it determines the classes and variables used

concurrently and the classes and methods. Chord is also capable of finding deadlocks.

The files generated, though, can be hundreds of megabytes in size and are not even

loadable. More accurate targeting is achieved by ARC-OPT when data race classes,

methods and variables are combined with the class and variable information gener-

ated by ConTest. In the future, additional analysis tools (static, dynamic, . . .) could

be added to the framework.

The list of concurrent variables is used for two purposes: first, for synchronizing

on statements containing these variables, and second, for use as synchronization vari-

ables. For example, if myInt and myClass are variables used concurrently, the ASAT

mutants generated are,

synchronized(myClass) { . . .myClass . . . }

synchronized(myClass) { . . .myInt . . . }

synchronized(myInt) { . . .myClass . . . }

synchronized(myInt) { . . .myInt . . . }

Synchronization on primitive types (ints, floats, . . .) isn’t allowed in Java, so

any mutants created from them won’t compile. ARC-OPT adds functionality to

remove primitive types from the list of variables used for synchronization (3rd and 4th

entries in the list) but keeps primitive types in the list of variables to be targeted for

synchronization (2nd entry in list.). It is possible that both the static analysis and

2http://pag.gatech.edu/chord/

93

Table 5.1: Number of classes, methods and variables targeted by ARC-OPT after
static analysis. The variables column is the number of non-primitive variables found.

Program
Static
Worked

Classes Methods Variables
Primitive
Variables
Eliminated

Account Yes 2 2 2 3
Accounts Yes 2 1 2 4
Bubblesort2 No 1 3 1 3
Deadlock No 1 10 4 0
Lottery Yes 2 1 3 3
Pingpong Yes 3 1 2 2
Airline Yes 1 1 5 3
Buffer Yes 2 2 2 9
Travelling sales No 1 17 4 16
String buffer No 1 20 1 3
Cache4j No 3 46 122 11

ConTest may fail to find concurrent classes, methods or variables. ARC-OPT must

be able to deal with all of these situations. When both fail the only variable ARC-

OPT can synchronize on is ‘this’. In practice ConTest never failed. If it doesn’t find

any concurrent classes or variables, something else has gone wrong. TXL operators

that add synchronization had to be split up to account for these cases. For example,

ASAT (add synchronization around a statement) was refactored into ASAT CMV

(classes, methods and variables used concurrently are known), ASAT CV (classes

and variables are known), ASAT MV (methods and variables are known) and ASAT

(no classes, methods or variables known, so the framework can only synchronize on

‘this’).

Compare Table 4.9 listing the number of classes, methods and variables in the

test programs with Table 5.1 showing the number considered by ARC-OPT after the

static analysis was run. Consider the Account program. It has 3 classes, 8 methods

and 9 variables. After analysis by ConTest and Chord, 2 classes, 2 methods and 5

94

Table 5.2: Summary of the results of running the test programs through ARC-OPT
30 times.

Program Avg. Time Fix Gen. Min. Time Max. Time
Account 2m 55s 1 2m 2s 5m 20s
Account sub-type 7m 45s 1.4 2m 14s 23m 40s
Accounts 9m 1s 1 5m 43s 15m 22s
Airline 7m 43s 2 7m 6s 8m 24s
Bubblesort2 8m 58s 1 7m 6s 13m 52s
Deadlock 10m 54s 1.2 5m 5s 18m 53s
Linked list 3m 40s 1 2m 7s 5m 59s
Lottery 36m 47s 3.3 4m 39s 139m 16s
Pingpong 6m 32s 1 5m 13s 10m 11s
Reader-writer 2m 28s 1 2m 6s 5m 12s

variables are found to be used concurrently. After identifying 3 variables as primitive

types, there are 5 variables targetable for synchronization (both primitive and non-

primitive) and 2 to synchronize on (non-primitives only.).

5.4 Evaluating ARC

Initially ARC was tested on a subset of programs from the IBM benchmark, (Ac-

count, Accounts, Airline, Bubblesort2, Deadlock, Lottery and Pingpong). During the

development of this thesis, additional programs were added to the test suite (Ac-

count sub-type, Linked list, Reader-writer, Buffer, Travelling sales, String buffer and

Cache4j) to test ARC-OPT, CORE and CORE-IMC. ARC was able to fix all of the

programs in the first set, except for Airline. A bug prevented it from selecting the

proper mutant (Section 4.5). This bug was fixed for ARC-OPT and future versions.

Each program in Table 4.8 was run through ARC and ARC-OPT 30 times us-

ing the parameters described in Table 4.11. Results are summarized in Table 5.2.

ARC-OPT was able to fix all 10 fixable programs and wasn’t able to fix the 4 non-

95

Table 5.3: Comparison of ARC and ARC-OPTs performances.

ARC CORE
Program Time Fix Gen. Time Fix Gen.
Account 8m 8s 5 2m 55s 1
Accounts 44m 1 9m 1s 1
Airline 12m 47s 2 7m 43s 2
Bubblesort2 100m 20s 2.2 8m 58s 1
Deadlock 2m 12s 1 10m 54s 1
Lottery 38m 2.4 36m 47s 3.6
Pingpong 12m 32s 1 6m 32s 1

fixable ones (Buffer, Travelling sales, String buffer and Cache4j). For the repairable

programs, the time taken to find a fix ranged from about 2 minutes to 36 minutes on

average. The average fix time dropped from 34 minutes with ARC to 13 with ARC-

OPT, an improvement of 61%. The most time consuming aspect of ARC-OPT is the

numerous ConTest executions. The second is the waiting necessary to determine the

difference between a successful execution and a timeout. The Timeout Multiplier in

Table 4.11 allows ARC and ARC-OPT to wait up to 4 times the running time of the

program for it to complete.

All fixes were found in the first or second generation. The static analysis by Chord

and the dynamic analysis by ConTest significantly constrained the state space. For

example, the Account program contains 3 classes, approximately 9 methods and 6

variables. After the analysis, these are reduced to 2 classes, 3 methods and 3 variables.

A population of 30 may exceed the number of mutations available causing the search

space to be exhaustively covered. If the correct program is 1 or 2 mutation steps from

the incorrect one, it should be found quickly.

96

Chapter 6

CORE-MC

6.1 Introduction

In this chapter we examine the development of CORE with model checking (CORE-

MC) in Section 6.2. Software engineering optimizations are described in Section 6.3.

CORE-MC is evaluated in Section 6.4. Variable selection is studied in Section 6.5.

6.2 CORE-MC

CORE-MC is the second contribution of this thesis and the third instantiation of

the CORE framework (after ARC and ARC-OPT). It augments the uncertainty of

noising with the certainty of model checking (Section 2.9). Model checking is used

to determine if a proposed fix truly eliminates the deadlocks and data races by ex-

haustively searching the state space of the program. Exhaustive model-checking of

mutants generated by CORE-MC provides certainty about results: a data race ex-

ists; a deadlock exists; there are no data races and no deadlocks. Java Pathfinder

(JPF)1 (Section 2.9.1) was selected as the model checker used by CORE-MC and

1Java Pathfinder, http://babelfish.arc.nasa.gov/trac/jpf

97

CORE-IMC.

Early in the development process we found that model checking by itself didn’t

work well. It took too long - hours sometimes, or crashed after running out of memory

due to the state space explosion problem. After some thought, a hybrid approach was

developed where both model checking and noising were used to test every proposed

fix. First, the program was model checked. If unsuccessful CORE-MC fell back on

noising with ConTest. Model checking can be very time consuming. As this thesis has

the requirement that CORE operate in a reasonable amount of time, it was necessary

to cap the model checking to a given search depth (say, 50 steps in the search space)

and a given search time (say, 30 seconds). CORE-MC fell back on noising when the

model checking failed and when the model checking reported the mutant was bug

free.

Model checking extends the reach of CORE-MC. StringBuffer is an example of a

program CORE couldn’t fix because ConTest noising couldn’t expose its data race

with any regularity. Java Path Finder finds the data race within 1 second2.

6.2.1 Adding JPF to CORE

CORE-MC was written in Python 2.7.X, JPF in Java. In CORE-MC, JPF is run by

a regular Java class. For the sake of argument we call it JRunJPF. JRunJPF accepts

configuration values for JPF, runs JPF and massages the results for later consump-

tion. Py4j3 is used as a bridge between CORE-MC/Python and JRunJPF/Java. It

starts, manages and shuts down JRunJPF. Py4j automatically converts many data

types between the two languages - allowing for easy configuration and querying of

results.

2CORE-MC still isn’t able to fix StringBuffer due to its complete lack of statement level locking.
3py4j, http://py4j.sourceforge.net/

98

Figure 6.1: Java allows locking on objects that haven’t been created yet. JPF flags
this as an error.

ob j e c t myObject ;

synchronized (myObject) {
. . .
}

myObject = new Object () ;
. . .

Adding JPF to CORE-MC wasn’t an easy task. There were a number of hurdles

to jump and details to iron out. Most noticeable was the way JPF reported problems

like deadlocks, data races and exceptions. Sometimes they are reported in the error

text, otherwise they are found in the exception text. It was necessary to concatenate

both texts together when searching for results.

Java allows one to use an object that hasn’t been instantiated yet as a synchro-

nization lock (Figure 6.1). JPF flags this as an error. In all future generations, JPF

continues to flag this program as incorrect even if CORE-MC has fixed all of the dead-

locks and data races in it. In effect any member of the population with this problem

is ‘knocked out’ and doesn’t contribute any more to the fixing process. During testing

for example, 2 - 3 members of the population were ‘knocked out’ this way every gen-

eration for the Lottery test program. For a population of 30, the search stalls after

10 - 15 generations. CORE-MC exhausts all remaining generations futilely searching

for a fix that is obscured by this synchronization-before-creation problem. To avoid

this it was necessary to search for the specific error and when encountered, to reset

the member to the previous generation.

One of the advantages of model checking is the wealth of information available.

For deadlocks one can retrieve the list of classes involved. For data races, classes

and variables are retrieved. These can be added to the existing list generated by

99

other forms of analysis (ConTest, Chord, ...) for better targeting of concurrently

used classes, methods and variables to better constrain the search space.

6.3 Software Engineering Optimizations

In section 5.3 the addition of static analysis to ARC-OPT was described. One observes

quickly that the list of concurrently used variables found by Chord never changes. A

useful optimization added to CORE-MC is to save the results of the analysis to file

so it doesn’t have to be re-run every time CORE-MC is invoked. This optimization

was back-ported to ARC-OPT to make comparisons between them more consistent.

In practice the CORE framework generates a large number of files. The ASAT

(Add Synchronization Around sTatements) mutator is the largest contributor. It

generates all mutants synchronizing individual lines of code. In a typical run the

number of mutants generated is

non-primitive concurrent variables × # lines where concurrent variables are used

× # generations × population size

If ASAT generates on average 200 mutants for each of the 30 members of the

population over 30 generations, up to 18,000 mutants are generated. This consumes

a lot of disk space - especially when one has to save nearly 800 runs for analysis!

Generating this many files caused CORE to completely fill a hard disk on more than

one occasion. An obvious optimization is to delete mutants that are no longer needed.

CORE-MC deletes mutants that are 2 or more generations old. We must keep the

previous generation of mutants for those occasions when a member needs to be rolled

back to the previous generation. Only when CORE-MC completes its analysis are

100

Table 6.1: Summary of the results of running the test programs through CORE-MC
30 times.

Program Avg. Time Fix Gen. Min. Time Max. Time
Account 8m 8s 1.3 2m 35s 17m 3s
Account sub-type 5m 48s 1.6 2m 4s 12m 13s
Accounts 10m 29s 1.1 6m 10s 22m 11s
Airline 13m 25s 2 11m 50s 15m 24s
Bubblesort2 9m 39s 1 6m 57s 17m
Deadlock 6m 6s 1 2m 33s 12m 35s
Linked list 2m 56s 1.1 2m 7s 6m 17s
Lottery 9m 36s 1.5 2m 58s 34m 14s
Pingpong 5m 52s 1 5m 25s 6m 35s
Reader-writer 2m 37s 1 2m 4m 24s

the N th and N − 1th generations of mutants deleted. Note that only the mutants are

deleted. Every other file is maintained.

Deleting mutants this way introduced new problems. Standard Python 2.7.X

file deletion libraries were used. They would sometimes run for minutes at a time

when deleting files. This introduced an unacceptable amount of uncertainty into the

running time of CORE-MC. A specialized library, SendToTrash4, was used to bypass

Python’s libraries and send the files directly to the trash/recycle bin. This didn’t

eliminate the overhead of file deletion, but deferred it to a time of the user’s choice.

6.4 Evaluation

Results of testing CORE-MC on the test suite are in Table 6.1. CORE-MC fixes

the 10 programs ARC-OPT can fix and cannot fix the 4 unfixable programs (Buffer,

String buffer, Cache4j and Travelling sales). When compared to ARC-OPT, CORE-

MC appears to do very well (Table 6.2). It is worse in 3 cases, about the same for

4 and better for 3 of the test programs. On average CORE-MC is 36% faster than

4SendToTrash 1.3, https://pypi.python.org/pypi/Send2Trash.

101

Table 6.2: Comparison of the average time required to find fixes for the test programs
for ARC-OPT and CORE-MC.

ARC-OPT CORE-MC
Program Time Fix Gen. Time Fix Gen.
Account 2m 55s 1 8m 8s 1
Account sub-type 7m 45s 1.4 5m 48s 1.6
Accounts 9m 1s 1 10m 29s 1.1
Airline 7m 43s 2 13m 25s 2
Bubblesort2 8m 58s 1 9m 39s 1
Deadlock 10m 54s 1.2 6m 6s 1
Linked list 3m 40s 1.1 2m 56s 1
Lottery 36m 47s 3.6 9m 36s 1.5
Pingpong 6m 32s 1 5m 52s 1
Reader-writer 2m 28s 1 2m 37s 1

Table 6.3: Variable study: JPF search time. Values studied were (90s, 60s, 30s, 20s,
10s). CORE-MC used a default search time of 30 seconds.

Program Best Search Time Time
Account 90 3m 45s
Accounts 30 6m 51s
Bubblesort2 30 8m 11s
Deadlock 10 6m 49s
Lottery 10 8m 45s
Pingpong 20 4m 8s

ARC-OPT.

6.5 CORE-MC Variable Study

All of the evaluations of ARC-OPT and CORE-MC were made using a common set

of parameters. An open question is whether the parameters are good ones. Is one

global set sufficient or does each test program have its own optimal set? Default

values include a population of 30 for the GA¬C, 30 generations for the GA¬C, JPF

102

Table 6.4: Variable study: GA¬C population size. Values studied were (50, 30, 20,
10, 5). CORE-MC used a default population of 30.

Program Best Population Time
Account 50 8m 14s
Accounts 20 8m 1s
Bubblesort2 50 8m 40s
Deadlock 30 4m 4s
Lottery 5 9m 13s
Pingpong 30 4m 4s

Table 6.5: Variable study: JPF search depth. Values studied were (200, 150, 100, 50,
25). CORE-MC used a default search depth of 50.

Program Best Search Depth Time
Account 150 4m 30s
Accounts 25 8m 11s
Bubblesort2 25 8m 31s
Deadlock 200 4m 52s
Lottery 150 3m 45s
Pingpong 200 4m 12s

search depth of 50 and JPF timeout of 30 seconds.

This section describes a study undertaken to determine how good the default

parameter choices for the GA¬C and JPF were by examining a range of values for each

parameter5. Parameters examined were the GA¬C generations, GA¬C population

size, JPF search time and JPF search depth. For example we looked at search times

of 90s, 60s, 30s, 20s and 10s. Results on the JPF search time are described in

Table 6.3, GA¬C population size in Table 6.4, JPF search depth in Table 6.5 and

GA¬C generations in Table 6.6. It is interesting to observe that each parameter has a

range of optimal values, except for GA¬C generations. Any value equal to or greater

than 5 is ‘optimal’ because CORE-MC ends when a fix is found and always ended in

5When this test was performed we still thought the airline program was unfixable, so it was
excluded.

103

Table 6.6: Variable study: GA¬C generations. Values studied were (30, 20, 10, 5, 3).
CORE-MC used a default 30 generations.

Program Best Generations Time
Account 3 4m 13s
Accounts 3 6m 28s
Bubblesort2 5 8m 56s
Deadlock 3 4m 50s
Lottery 3 3m 36s
Pingpong 3 4m 4s

Table 6.7: Comparison of optimized variables vs non-optimized for CORE-MC.

CORE-MC CORE-MC Optimized
Program Time Fix Gen. Time Fix Gen.
Account 7m 6s 1.1 8m 20s 1.1
Accounts 9m 31s 1 9m 26s 1.2
Bubblesort2 12m 25s 1 10m 27s 1
Deadlock 5m 31s 1 5m 3s 1
Lottery 34m 49s 3.3 4m 18s 3
Pingpong 7m 8s 1 5m 38s 1

under 5 generations.

Once all of the optimal values were collected, each program was run through

CORE-MC using these values. Results are summarized in Table 6.7. Optimized

values are worse in one case, the same for one case and better for the rest. Lottery

is the only program dramatically affected by the optimized variables - dropping from

34 min to 4 min. On average, the optimized values are 13% better than the default

selection. This indicates that the default selection was good but not optimal. Optimal

is of course program dependent.

104

Chapter 7

CORE-IMC

7.1 Introduction

In this chapter we examine the development of CORE-IMC (Incremental Model

Checking). We begin by discussing the software engineering optimizations added

to CORE-IMC as described in Section 7.2. These are based on experience gained us-

ing CORE-MC. Further constraining the search space by searching function headers

for in-scope lock variables is described in Section 7.3. Incremental model checking is

introduced in Section 7.4. A test and a study were undertaken to give us confidence

that incremental model checking works for CORE. They are described in Section 7.5.

A full evaluation of incremental model checking is undertaken in section 7.6.

7.2 Software Engineering Optimizations

As described earlier (Section 4.4), one of the mutations CORE makes is the syn-

chronization of the run() method. This mutation may fix a program but has the

undesirable side-effect of serializing it. An option was added to the project configura-

105

Figure 7.1: In CORE-INC, mutations were created that contained nested synchro-
nization on the same variable.

void t r a n s f e r (Account ac , double mn){

synchronized (ac) {
synchronized (ac) {

synchronized (ac) {
amount−=mn;
ac . amount+=mn;

}

}
}

}

tion file to disallow any mutations from synchronizing the run() method. Even when

synchronizing run is allowed, a check is added to see if that was the fix actually found.

If it was, an alert is written to the log file explaining that the evolved fix synchronizes

run() and describes the configuration option to disallow it in future runs.

Examination of the mutants generated revealed that CORE was creating mutants

that contained nested synchronization on the same variable (Figure 7.1). A check

was added to prevent this. Note that nested synchronization on different variables

is still allowed. Finally, some programs cannot be model checked successfully in the

time allotted. CORE was modified to disable the model checker if it timed out more

than 10 times in a run. From that point onward the program under test would only

be noised.

7.3 Scanning Function Headers

CORE was unable to fix three programs when synchronizing run() was disallowed.

Further investigation determined that CORE didn’t have the ability to find variables

106

passed as arguments to functions. CORE extracts the classes, methods and variables

used concurrently that are found by ConTest, Chord and JPF. The list of variables is

incomplete in the sense that a method may be found to be used concurrently, but no

in-scope variables for that method were found on which it could synchronize. Either

no mutants be generated for this method or any mutants created for it will fail to

compile as the synchronization variables were out of scope. A code scanning step was

added that looked for variables in the function declarations that were found to be

used concurrently and added them to the internal list of variables used concurrently.

As usual, primitive types were filtered out.

Note that the framework doesn’t associate variables used concurrently to the meth-

ods in which they were found. In some cases this isn’t possible - such as when ConTest

returns the list of classes and variables it found were used concurrently. There is no

associated method. In other cases a variable associated with one method could be

used by another method. This increases the chance of finding a fix by a small amount.

When CORE attempts to compile a candidate program, any mutants synchronizing

on out of scope variables will be rejected.

7.4 CORE-IMC

As we learned in Chapter 6, model checking is time and resource intensive. CORE-

MC is purely mutation driven. It only manipulates synchronize(...) statements.

Changes from one generation to the next are usually small. Model checking would

benefit greatly if it could re-use the results of the previous model-checking run from

generation N-1 during the current run at generation N. Incremental model-checking

techniques [48, 81] (Section 2.9.3) add this capability. After fully model checking a

proposed fix in generation 1 of the GA¬C, only incremental model checking should be

107

Table 7.1: Number of full model checking (MC) and incremental model checking runs
per strategy for population N and generations G.

Strategy Full MC Runs
Incremental
MC Runs

Model check each member of pop-
ulation in generation 1, incremen-
tal for the rest

N (N - 1) × G

MC original program once, incre-
mental for the rest

1 N × G

required to check the changes introduced by each mutation in each future generation.

We believe this augmented approach will be faster than using model checking alone.

Using this strategy the number of full model checking runs is equal to the size

of the population N. The number of incremental checks is equal to the number of

generations G, minus the first generation, times the population size: (G − 1) × N .

CORE-IMC currently uses this approach. It may be possible to do better by model

checking the buggy program once, generating the first generation for the evolutionary

strategy, each containing a random mutation, then incrementally model checking each

mutated program against the un-mutated. One full model checking run is performed

and G×N incremental runs are performed. Table 7.1 summarizes this.

7.5 Does Incremental Model Checking Actually Gen-

erate Any Saving?

Incremental model-checking adds the overhead of loading, managing and saving the

list of states explored by the model checker to the model checking process. It works

well when the changes from one run to the next are small. The question becomes

then, are changes to synchronized statements small? A test program and a study were

108

Table 7.2: Hand-seeded mutations for the Accounts program, for the proof of concept
incremental run.

Generation Mutant
0 None (base program)
1 ASAT on a for-loop in Bank.java
2 ASM in Account.java
3 ASAT on a different for-loop in Bank.java

Table 7.3: Results of the proof of concept incremental run on the Accounts program.
Savings is calculated from the 2nd and 4thcolumns.

Gen. Build (Non-Incr.) Reuse (Incr.) Savings?
Time (s) States (×103) Time (s) States (×103)

0 9 27.8 9 27.8 No
1 9 28.5 9 28.5 No
2 25 119 17 92 Yes (32%)
3 22 110 16 83.3 Yes (27%)

undertaken to determine if incremental model checking would realize any benefits in

practice.

7.5.1 Accounts Test

A proof of concept incremental model-checking test was created by mutating the

Accounts program. The base Accounts program was used for generation 0. Three

mutations were hand-added to the program for generations 1, 2 and 31. Mutations

are cumulative. Table 7.2 describes the mutations added. Table 7.3 shows how

regular model-checking in the second and third columns compares to incremental

model-checking in the fourth and fifth columns.

During the 0th and 1st generations there were no savings from incremental model

1All mutations were added before the model checking was invoked. No attempt was made to
optimize this proof of concept run.

109

checking. Overhead from managing the incremental list is small, as the non-incremental

and incremental times are approximately the same. This changes in the third and

fourth generations. We see improvements of 32% and 27% respectively in the time

required and states explored for incremental model-checking. This gives us some

confidence that incremental model-checking works by reducing the amount of time

required to model check this program.

7.5.2 Population 2 Study

The results of the previous section are encouraging but they don’t tell us anything

about how CORE-IMC will perform. For an initial test with CORE we created an

easy test that the incremental aspect should be able to pass. If CORE fails this

test, then we have strong reason to doubt that incremental model checking will be

beneficial to CORE.

The test is biased and easy because we reduced the population of the GA¬C to

2. This low population is unusual for evolutionary strategies and will hamper their

ability to find a solution quickly. To find a solution the GA¬C will run for more

generations and give the incremental aspect of CORE-IMC a chance to take hold

and demonstrate whether or not it offers any savings. For this study, ARC-OPT,

CORE-MC and CORE-IMC were run with the standard settings and a population of

two. Results are recorded in Tables 7.4, 7.5 and 7.6.

From the tables we see that CORE-MC performed better than ARC-OPT on all

programs. For the population of 2, ARC-OPT averaged 16 minutes to find a fix

while CORE-MC averaged 10 min, 35 sec. CORE-IMC has mixed results compared

to CORE-MC. CORE-IMC is faster in 3 cases, slower in 2 and about the same for

the sixth. Overall though, CORE-IMC comes out slightly ahead of CORE-MC at

an average run time of 10 min, 2 sec compared to CORE-MC at 10 min, 35 sec.

110

Table 7.4: Results from ARC-OPT for the population 2 study.

Program Successes Time Min Time Max Time Fix Gen.
Account 19/20 9m 45s 5m 3s 32m 29s 7.6
Accounts 18/20 35m 4s 8m 4s 186m 26s 5.9
Bubblesort2 20/20 12m 17s 8m 28s 23m 46s 3.5
Deadlock 18/20 16m 21s 4m 30s 93m 12s 4.4
Lottery 5/20 14m 47s 4m 53s 26m 50s 14.2
Pingpong 20/20 7m 38s 5m 17s 20m 13s 2.8

Table 7.5: Results from CORE-MC for the population 2 study.

Program Successes Time Min Time Max Time Fix Gen.
Account 13/20 8m 42s 2m 15s 18m 13s 11.2
Accounts 18/20 13m 19s 6m 7s 81m 5s 4.2
Bubblesort2 20/20 11m 31s 6m 59s 32m 9s 4.1
Deadlock 20/20 13m 14s 2m 6s 140m 12s 4.5
Lottery 14/20 10m 49s 2m 58s 42m 23s 6.6
Pingpong 12/20 5m 56s 5m 21s 9m 10s 2.6

CORE-MC is on average 33% faster than ARC-OPT and CORE-IMC is on average

5% faster than CORE-MC2. For this scenario, model checking is much better than

noising. Incremental model-checking also sees gains, but they are smaller than with

the decision to use a model checker. It is also interesting to observe that not all runs

found fixes for the deadlocks and data races. When the population was 30, the CORE

framework always found a fix if one was available. A population of 2 often flounders.

The small population cannot adequately cover the test programs search spaces.

From these two studies we have some confidence that incremental model checking

will offer benefits over model checking alone.

111

Table 7.6: Results from CORE-IMC for the population 2 study.

Program Successes Time Min Time Max Time Fix Gen.
Account 12/20 6m 39s 2m 23s 12m 38s 8.3
Accounts 15/20 12m 11s 6m 23s 43m 52s 4.3
Bubblesort2 20/20 13m 17s 6m 55s 34m 59s 5.3
Deadlock 16/20 10m 42s 2m 6s 95m 51s 4.3
Lottery 10/20 11m 36s 3m 10s 29m 26s 9.7
Pingpong 16/20 5m 46s 5m 22s 10m 5s 1.5

Table 7.7: Summary of the results of running the programs through CORE-IMC 30
times.

Program Avg. Time Fix Gen. Min. Time Max. Time
Account 3m 29s 1 2m 39s 4m 48s
Account sub-type 5m 31s 1.7 3m 56s 7m 46s
Accounts 10m 32s 1.2 6m 23s 18m 58s
Airline 11m 22s 2 9m 42s 12m 34s
Bubblesort2 10m 27s 1 7m 23s 16m 45s
Deadlock 6m 8s 1 2m 34s 11m 53s
Linked list 5m 4s 1.7 2m 5s 22m 36s
Lottery 9m 30s 1.5 4m 22s 22m 21s
Pingpong 6m 12s 1 5m 44s 7m 19s
Reader-writer 2m 41s 1 2m 1s 3m 44s

7.6 Evaluation

Results of testing CORE-IMC on the test suite are in Table 7.7. CORE-IMC can fix

the 10 programs ARC-OPT and CORE-MC can fix and cannot fix the 4 unfixable

programs (Buffer, Stringbuffer, Cache4j and Travelling sales.) When compared to

CORE-MC, CORE-IMC is faster than CORE-MC in 3 cases, about the same in 4

cases and is slower than CORE-MC for the other 3. (Table 7.8). Overall CORE-IMC

runs on average 10% faster than CORE-MC. This smaller improvement is expected

as incremental model checking only applies to JPF and not to the thread noising.

2Only successful runs are considered in the population 2 study.

112

Table 7.8: Comparison of CORE-IMC and CORE-MC.

CORE-MC CORE-IMC
Program Time Fix Gen. Time Fix Gen.
Account 8m 8s 1.3 3m 29s 1
Account sub-type 5m 48s 1.6 5m 31s 1.7
Accounts 10m 29s 1.1 10m 32s 1.2
Airline 13m 25s 2 11m 22s 2
Bubblesort2 9m 39s 1 10m 27s 1
Deadlock 6m 6s 1 6m 8s 1
Linked list 3m 1s 1.1 5m 4s 1.7
Lottery 9m 36s 1.5 9m 30s 1.5
Pingpong 5m 52s 1 6m 12s 1
Reader-writer 2m 37s 1 2m 41s 1

113

Chapter 8

Conclusions and Future Work

8.1 Introduction

We summarize the work and its contributions in Section 8.2. Next, future work is

explored in Section 8.3. Finally in Section 8.4 we end with the ways in which the

framework may be generalized for use in other areas.

8.2 Conclusions

Fixing bugs in programs is an expensive and time consuming process. Significant

progress has been made on fixing bugs in single threaded programs. GenProg is an

example of the state of the art. It assumes the fix is in the program already and

that moving it to the execution path will fix the problem. Both of these decisions

strongly constrain the search space of solutions and allow GenProg to fix bugs in real

programs.

A great deal of work has been done on finding data races and deadlocks and

suppressing them. Automatic repair of parallel programs is an under studied area.

114

This thesis contributes to it by developing the CORE framework. It fixes data races

and deadlocks in concurrent Java programs. Contributions from this thesis come in

two forms, constraining the search space and employing an efficient algorithm for

navigating said search space.

In the CORE framework the search space is constrained by using different tools’

abilities to find the classes, methods and variables used concurrently. They are;

• Using ConTest to find classes and variables in ARC

• Using Chord to find the classes, methods and variables in ARC-OPT

• Using JPF to find the classes and methods in CORE-MC

• Scanning function headers to find in-scope lockable variables in CORE-IMC

The final lists of classes, methods and variables are used to guide the search though

the state space of potential mutations. These mutations add, remove, grow, shrink

and change variables in synchronize(...) statements.

Software engineering improvements to the framework from one program to the

next are too numerous to mention. They can be found in sections 5.3, 6.3 and 7.2.

At each step the framework was evaluated and compared to the prevous step.

In the first phase ARC was heavily optimized to produce ARC-OPT (Chapter 5).

Evaluation of the results was very positive, as Table 8.1 indicates. The average fix

time dropped from 34 minutes to 13, an improvement of 61%.

The second phase integrated a model checker into the framework (CORE-MC,

Chapter 6). Noising has its limitations. It is simply unable to expose some rarely

occurring data races and deadlocks. We believed that model checking would be

competitive with or faster than noising. In practice we found that noising and model

checking had to be used together. Model checking doesn’t work on all programs and

115

Table 8.1: Comparison of ARC’s and ARC-OPT’s performances on the test suite.

ARC ARC-OPT
Program Time Fix Gen. Time Fix Gen.
Account 8m 8s 5 2m 55s 1
Accounts 44m 1 9m 1s 1
Airline - - 7m 43s 2
Bubblesort2 100m 20s 2.2 8m 58s 1
Deadlock 2m 12s 1 10m 54s 1
Lottery 38m 2.4 36m 47s 3.6
Pingpong 12m 32s 1 6m 32s 1

Table 8.2: Comparison of ARC-OPT and CORE-MC on the test suite.

ARC-OPT CORE-MC
Program Time Fix Gen. Time Fix Gen.
Account 2m 55s 1 8m 8s 1
Account sub-type 7m 45s 1.4 5m 48s 1.6
Accounts 9m 1s 1 10m 29s 1.1
Airline 7m 43s 2 13m 25s 2
Bubblesort2 8m 58s 1 9m 39s 1
Deadlock 10m 54s 1.2 6m 6s 1
Linked list 3m 40s 1 2m 56s 1
Lottery 36m 47s 3.6 9m 36s 1.5
Pingpong 6m 32s 1 5m 52s 1
Reader-writer 2m 28s 1 2m 37s 1

because we want CORE-MC to return results in a reasonable time, we had to limit

the search time and search depth. When model checking didn’t work or ran out of

time, CORE-MC fell back on noising. Comparing this hybrid approach to the noising

only approach (Table 8.2), gives mixed results. The dramatic improvement to Lottery

resulted in CORE-MC being, on average, 36% faster than ARC-OPT.

During this phase, a study of the default configuration variables used for the

heuristic search (number of generations, model checking time, search depth, ...) was

undertaken to determine how close to optimal the chosen values were. We learned

116

Table 8.3: Comparison of CORE-IMC and CORE-MC on the test suite.

CORE-MC CORE-IMC
Program Time Fix Gen. Time Fix Gen.
Account 8m 8s 1.3 3m 29s 1
Account sub-type 5m 48s 1.6
Accounts 10m 29s 1.1 10m 32s 1.2
Airline 13m 25s 2 11m 22s 2
Bubblesort2 9m 39s 1 10m 27s 1
Deadlock 6m 6s 1 6m 8s 1
Linked list 3m 1s 1.1 5m 4s 1.7
Lottery 9m 36s 1.5
Pingpong 5m 52s 1 6m 12s 1
Reader-writer 2m 37s 1 2m 41s 1

they were within 13% of optimum and that as expected, optimal values were program

dependent.

In the third phase, incremental modelling is added to CORE-MC to produce

CORE-IMC (Incremental model checking). Incremental model checking attempts to

speed up model checking runs by using the results of previous model checking runs.

Any program state evaluated in a previous run and recorded to file doesn’t need to

be computed again - saving efford. On average CORE-IMC was 10% faster than

CORE-MC. Table 8.3 evaluates CORE-IMC and compares it to CORE-MC.

8.3 Future Work

CORE is full of possibilities for future work and research. The framework is highly

adaptable and can grow in many directions. Some of these are explored in the next

two subsections.

117

8.3.1 Software Engineering

1. No attempt was made to optimize the configuration values of the tools used,

ConTest, Chord and JPF. Different choices should affect the time required for

the framework to find solutions. (Undergraduate)

2. Record the testing results of each mutation to a database, so that when a

mutation is seen again the results can be retrieved quickly. (Undergraduate)

3. Add crossover and selection to the GA¬C. (Masters)

4. Update the Python code from version 2.7.X to the most recent release1. (Un-

dergraduate)

5. Integrate the framework into an existing software development tool chain. (Mas-

ters)

8.3.2 Theoretical

1. Augmenting the existing tools (ConTest, Chord and JPF) with new ones could

better constrain the search space or provide more information to the heuristic

search. (Masters)

2. Adding a dynamic analysis tool to CORE would give it the ability to target the

portions of code affected by the bug. (Masters)

3. Augment the mutation operators with additional operators to help repair data

races and deadlocks. (Undergraduate) Study their effectiveness. (PhD)

4. CORE’s operator weighting scheme needs to be improved upon and evaluated.

(Undergraduate)

1Python 3.3.5 is the latest version available as of June, 2014.

118

5. CORE’s optimization phase needs to be improved upon and evaluated. (Mas-

ters)

6. Create metrics to measure the complexity of concurrent bugs. Lines of code

don’t work. (PhD)

7. Since random searching is a strong competitor to heuristic searching in auto-

matic bug repair,

(a) compare random mutant generation and selection against weighted gener-

ation and selection. (Masters)

(b) compare random operator type selection against weighted selection. (Un-

dergraduate)

(c) study and describe why random search works so well for automatic bug

repair. (Masters/PhD)

8. Some programs fail to model check because they use code (like Integer.parseInt)

that JPF doesn’t like. Develop a system whereby JPF can be modified to work

on as wide a range of Java code as possible2. (Masters)

8.4 Generalizations

CORE was customized to repair deadlocks and data races in concurrent Java pro-

grams. There are numerous ways the framework could be generalized and used in

other areas.

1. Modify CORE to work with other programming languages.

2For example, by using existing modules, http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start
and http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/start.

119

(a) New analysis tools (Noisers, model checkers, ...) may be needed for this.

(Undergraduate)

(b) New TXL operators would need to be written. (Masters)

2. Add mutation operators for different kinds of software bugs. (Masters)

3. Modify CORE to fix bugs in sequential programs. (PhD)

4. Augment CORE with additional heuristic search techniques like ant, simulated

annealing or particle swarm. (Masters)

At its heart CORE is a mutation engine. Mutations perturb existing values in

an attempt to find better solutions. CORE can be adapted to fix problems in other

parts of the search-based software engineering field. For many of these tasks, the code

in the target program must be altered or moved. TXL is very good at doing so in

a programming language agnostic way. It has already been integrated into CORE.

Generalizations include;

1. Program refactoring. (Masters)

2. Test suite optimization, selection or refactoring using the ConMan operators

and other tools. (Masters)

3. Security testing. (PhD)

4. Input mutation for testing (eg, security testing) (Masters/PhD)

5. Metric optimization through source refactoring. (Masters)

6. Performance optimization. (Masters)

120

Appendices

121

Appendix A

Source Listings for Test Programs

A.1 Source Listings

In the following sections the source code is shown for the data race or deadlock along

with the fix found by the CORE framework for each of the test programs.

A.1.1 Account

In Account there is a data race between the transfer, depsite (sic) and withdraw

methods in the run method. When run the ith account thread invokes the transfer

method of the (i+ 1)th account (Figure A.1). On the next iteration of the loop the

(i+ 1)th account thread invokes depsite and withdraw. As the ac class in transfer

isn’t synchronized, the transfer can be overwritten by the depsite or withdrawal

method calls. In plainer language, $99 is deducted from sender i, but isn’t received

by the receiver i+ 1 as it is overwritten by the deposit of $300 or the withdrawal of

$100.

CORE can fix Account two different ways. If synchronizing run() is allowed, this

fixes the data race - but at the cost of serializing the program. Otherwise, CORE

122

Figure A.1: In the Account program, the Transfer method can lose updates because
of a lack of synchronization on the ac variable.

synchronized void t r a n s f e r (Account ac , double mn){

amount−=mn;
ac . amount+=mn;

}

Figure A.2: In the Account program, synchronizing ac in the Transfer method fixes
the data race.

synchronized void t r a n s f e r (Account ac , double mn){
amount−=mn;
synchronized (ac) {

ac . amount+=mn;

}
}

synchronizes ac in the transfer method (Figure A.2).

A.1.2 Account Sub-Type

Account Sub-Type [23] is a modification of the Account program. In it an abstract

class represents a basic account type. Two child types were created: business and

personal accounts. In the Business.transfer method the transfer was properly syn-

chronized, while in the Personal.transfer method it was not (Figure A.3). As with

Account above, the lack of synchronization on Personal.transfer caused a data race

between the transfer, deposite and withdraw methods. CORE fixed it the same

way it fixed Account - by synchronizing within the transfer method.

This wasn’t the end of the story though. After fixing the data race from

Personal.transfer, the JPF model checker found a deadlock where ConTest didn’t.

JPF reported that the account.transfer method calls for personal and business ac-

123

Figure A.3: In Account Sub-Type, the PersonalAccount.T ransfer method lost up-
dates because of a lack of synchronization on the ac variable. Once that was fixed,
the program deadlocked on the transfer method calls in run.

public synchronized void t r a n s f e r (Account ac , int mn){
amount−=mn;
ac . amount+=mn;

}

public void run () {
. . .
account . t r a n s f e r (bank . getAccount (nextNumber) ,10) ;
account . depo s i t (10) ;
account . withdraw (20) ;
account . depo s i t (10) ;
account . t r a n s f e r (bank . getAccount (nextNumber) ,10) ;

account . withdraw (100) ;
}

counts in Manager.run deadlocked. Account N calls transfer. First it locks itself

then it attempts to lock account N+1. At the same time account N+1 calls transfer

to lock itself and then lock object N+2 and so on. JPF detects a deadlock because

each account can be in transfer leading to a circular deadlock.

The only way to fix this bug is to serialize access to transfer. Both calls to

transfer in run must be synchronized on a global lock, and depending on the muta-

tions, the same global lock. This is a hard fix for CORE to find. Synchronizing run

(if allowed in the configuration file) also fixes the bug - at the cost of parallelism.

A.1.3 Accounts

Accounts has a very straightforward data race in the service method (Figure A.5).

In run the account repeatedly adds a random amount to a balance and the global

running sum. Everything works correctly if the sum of balances is equal to the

124

Figure A.4: In Account Sub-Type, CORE fixed the data race in PersonalAccount.
Transfer but had trouble fixing the deadlock in run().

public synchronized void t r a n s f e r (Account ac , int mn){

amount−=mn;
synchronized (ac) {

ac . amount+=mn;
}

public void run () {

. . .
synchronized (bank) {

account . t r a n s f e r (bank . getAccount (nextNumber) ,10) ;
}
account . depo s i t (10) ;
account . withdraw (20) ;
account . depo s i t (10) ;

synchronized (bank) {
account . t r a n s f e r (bank . getAccount (nextNumber) ,10) ;

}
account . withdraw (100) ;

}
}

Bank Total global sum. The work is done in the static Service method. Multiple

threads race on Bank Total in Service causing the global sum to disagree with the

sum of individual account balances.

The optimal fix is to synchronize the Bank Total line in the Service method

(Figure A.6). A less optimal fix is to synchronize both lines or the method itself.

A.1.4 Airline

Airline is a threaded ticket sales simulator for airlines. It uses a class level variable to

keep track of the number of seats sold on an aeroplane. Sales stop when the number

of tickets sold is equal to the aircraft’s capacity. This programs has a race on the

125

Figure A.5: In the Accounts program, threads race on the Service method.

public void run () {
int loop = 100 ;
for (int i = 0 ; i< loop ; i++){

this . Action () ;
. . .

}
}

public void Action () {
int sum = random . next Int () % MAXSUM;

Bank . S e r v i c e (Account Id , sum) ;
}

public stat ic void Se rv i c e (int id , int sum) {
accounts [id] . Balance += sum ;
Bank Total += sum ;

}

Num Of Seats Sold and StopSales variables between the main body of code and

the run methods of the ticket sellers. One or more seats can be sold past the capacity

of the aeroplane on different threads after StopSales is set to true.

Initially Airline was classified as unfixable by ARC. After reviewing it again for

this thesis it was clear that it should be fixable by ARC-OPT. Sadly, ARC-OPT

couldn’t fix airline either, but both CORE-MC and CORE-IMC could. Upon anal-

ysis, the cause of ARC-OPT’s failure to fix airline was traced to the fact that all

of the concurrent variables discovered by the analyses were of primitive types. Java

doesn’t allow synchronization on primitive types, so the mutants generated by both

ARCs didn’t compile. Both ARC and ARC-OPT generated 173 ASAT (Add Synchro-

nization Around sTatement) mutants using primitive types as the locking variables,

15 ASM (Add Synchronization around a Method) again using primitives for locking

126

Figure A.6: CORE’s fix for the Accounts program.

public stat ic void Se rv i c e (int id , int sum) {
accounts [id] . Balance += sum ;
synchronized (accounts) {

Bank Total += sum ;
}

}

variables and 3 ASIM (Add Synchronization In Method header) mutants. Of the 191

mutants available, only 2 of the ASIM mutants created compilable programs1. ARC

and ARC-OPT both failed to fix Airline for two linked reasons. First, 189 of the 191

mutants didn’t compile. Second, there was a bug in both ARC and ARC-OPT that

caused them not to consider the ASIM mutants. If ARC or ARC-OPT never chose

an ASIM mutant, they would never create a compilable program and never find a fix.

This is important because one of the ASIM mutants did fix the bug.

During the development of the CORE-MC and CORE-IMC, this ASIM selection

bug was fixed. Now both CORE and CORE-IMC can fix Airline. One of the fea-

tures added to the framework was the elimination of primitive types from the list of

synchronizable variables. As discussed, all discovered variables were primitive. No

ASAT or ASM mutants were generated - only ASIM. With no guidance, ARC fell

back on method synchronization and found the only fix it could, synchronizing run().

A.1.5 Bubblesort2

Bubblesort2 parallellizes the bubblesort algorithm (Figure A.9). It creates a data

race on the globally declared array variable array. Every thread uses the swpArray

function to modify the array. This call only has synchronization within the object but

1One ASIM mutant attempted to synchronize the constructor, so only 2 of them compiled.

127

Figure A.7: In the Airline program, there is a race on the StopSales variable between
the main body of code and the run method.

. . .

for (int i = 0 ; i < Num o f t i c k e t s i s su ed ; i ++) {
threadArr [i] = new Thread (this) ;
i f (StopSa les) {

Num Of Seats Sold −−;
break ;

}

threadArr [i] . s t a r t () ;
}
. . .

public void run () {
Num Of Seats Sold ++;
i f (Num Of Seats Sold > Maximum Capacity)

StopSa les = true ;
}

not between objects. Multiple objects of the class can be in swpArray simultaneously

making changes to the global array. This causes data races.

CORE fixes the data race by locking array accesses on the array variable (Fig-

ure A.10). Ideally CORE would synchronize the lines in swpArray. This isn’t pos-

sible because there are no non-primitive variables in scope on which to lock. CORE

finds the only fix it can, synchronizing run. Once again the program is unavoidably

serialized.

A.1.6 Deadlock

Our working physicists’ deadlock is implemented in the Deadlock program in terms of

file copying from a to b and b to a simultaneously (Figure A.11). The write method

attempts to lock the source file, then the destination file in turn. If two threads each

128

Figure A.8: CORE fix for the Airline program.

public synchronized void run () {
Num Of Seats Sold ++;
i f (Num Of Seats Sold > Maximum Capacity)

StopSa les = true ;
}

lock their source file, the program deadlocks.

CORE’s fix is to synchronize access to the write method (Figure A.12). Other

fixes found by CORE include synchronizing the whole run method and synchronizing

the write method in run.

A.1.7 Lottery

In Lottery three methods race on the randomNumber variable (Figure A.13). The

different analysis tools find synchronizable variables, but not all of the synchronizable

methods. They find only that the generate method is used concurrently. Without

the present and record methods, all of the lines racing on randomNumber cannot

be synchronized to fix the data race. None of the three methods receive arguments,

so searching for them is of no help.

With incomplete information, CORE finds the only fix it can - synchronizing

run (Figure A.14). This problem is in part a limitation of the tools used. Different

analysis tools might find the other two methods. Even then CORE would still have

some difficulty because the lines in the three methods must synchronize on the same

lock. Currently CORE randomly selects a lock for each added synchronize statement.

129

Figure A.9: In Bubblesort2 the threads can race on the array variable in the run

and swpArray methods.

public void run ()

{
int i ;
for (i =0; i<f i n ; i++)
{

i f (array [i]> array [i +1]) {
swpArray (i) ;

}
i f (i==0) {

NewThread ntt=new NewThread (f i n −1) ;
ntt . s t a r t () ;

}
}

}

private stat ic synchronized void swpArray (int i) {
int temp ;
temp=array [i +1] ;
array [i +1]=array [i] ;
array [i]=temp ;

}

A.1.8 Pingpong

In Pingpong there is a class level variable called pingPongP layer accessed by all

threads. These threads call the ping method that in turn calls pingPong. In

ipingPong the pingPongP layer variable is set to null for 50 milliseconds. A different

thread trying to call pingPongP layer.getI() during this 50 milliseconds generates a

NullPointerException.

CORE fixed PingPong by synchronizing any method in the chain of calls - run,

ping (Figure A.16) or pingPong.

130

Figure A.10: CORE fix for the Bubblesort2 program.

public void run () {
int i ;
synchronized (array) {

for (i = 0 ; i < f i n ; i ++) {
i f (array [i] > array [i + 1]) {

swpArray (i) ;
}
i f (i==0) {

NewThread ntt=new NewThread (f i n −1) ;
ntt . s t a r t () ;

}
}

}
}

A.1.9 Linked List

Linked list is a concurrent implementation of a linked list. It has a data race in

the insert method. The last line of code, p.current.next = ... can be raced on,

causing random linking within the list (Figure A.17). The fix is to extend the

synchronized(this) block down one line to properly synchronize the method (Fig-

ure A.18). Other fixes found by CORE include synchronizing more or all of the lines

in the method.

A.1.10 Readers-Writers

Readers-Writers is a concurrent implementation of readers and writers operating on

a common pool. It has a data race between the readers and writers. Sometimes a

reader can be active when a writer is writing. When this occurs, the beforeRead

method throws a java.lang.IllegalMonitorStateException (Figure A.19). The fix is

to synchronize the beforeRead method (Figure A.20).

131

A.1.11 Buffer

Buffer has multiple readers consuming from and writers writing to a buffer. It contains

a notify vs notify all bug. If a buffer is full (or empty) and a writer (reader) notifies

another writer (reader), nothing happens and the program deadlocks. If notifyall had

been called instead, a reader thread (writer thread) would activate to consume some

content from the full buffer (write some content to the empty buffer). CORE doesn’t

have any mutation operators to change notify statements to notifyall statements, so

it cannot fix this program.

A.1.12 StringBuffer

StringBuffer contains a data race on the count variable between the append meth-

ods and the delete method (Figure A.22). It occurs very rarely – on the order

of 1 in 6000 ConTest runs2. When it occurs StringBuffer crashes and throws a

StringIndexOutOfBoundsException. As ARC and ARC-OPT use ConTest, they

cannot demonstrate the bug with any regularity, causing CORE to erroneously report

the original buggy program as ‘fixed’.

CORE cannot fix the race either. It can improve the search depth at which the

model checker finds the bug though. For example, the search depth was improved

from 22 to 38 over the course of a run. This suggests the bug will occur less fre-

quently. There are two reasons to be sceptical. First, the data race already occurs

rarely. Improving this from 1 in 6000 to 1 in 10000 (say) only makes the bug harder

to find. Second, these improvements were from synchronizing other methods like

ToString. Even removing synchronization from methods can improve the search

depth! For StringBuffer there isn’t a clear correlation between higher search depth

2The author has seen this exception occur only once.

132

and the program being more correct.

CORE attempted to fix the append(StringBufferSB) method. By itself this

isn’t enough. The underlying problem in StringBuffer is a complete lack of syn-

chronization at the statement level. Only methods are synchronized. Two different

methods can race on any shared variable. This complete lack of synchronization is a

gross misunderstanding of concurrency that CORE cannot fix.

A.1.13 Cache4j

Different bug detection research papers have different things to say about Cache4j.

In one [65], it has a benign atomicity violation. In another [73], a race over the sleep

field in CacheCleaner.java was found, leading to an uncaught exception (Figure A.23).

If sleep is set to true by a thread in the left part of Figure A.23, followed by a

context switch (before this thread enters the try block) to a thread at the right part

of Figure A.23, an uncaught InterruptedException is thrown, causing the second

thread to crash. To fix this bug CORE has to synchronize the code in the left part

of Figure A.23.

A.1.14 Travelling Salesperson (TSP)

Once again different papers have different things to say about this implementation

of the Travelling Salesperson algorithm. One detection method [66] states that the

data races in TSP are benign. Another found both benign data races and malignant

ones that “... involved updates that could be lost, leading to incorrect results” [85].

There was no specific information on where the bug is or how frequently it occurs

when found.

TSP is similar to StringBuffer in that the data race appears infrequently. While

133

most programs are noised by ConTest 15 times, it is necessary to noise TSP over

1000 times for every member for every generation, in order for ConTest to expose

the bug with any regularity. On top of the rarity of the data race, Cache4j times

out on average once every 300 runs. Timeouts appear about 3× more commonly

than the data race, when the timeout is set to 20× the average running time of

the program. This results in every potential fix being declared incorrect because a

timeout is considered incorrect. In practice, CORE runs until the large number of

ConTest runs causes the framework to crash. CORE is unable to fix the Travelling

Salesperson program.

134

Figure A.11: The Deadlock program simulates the working physicist problem by
locking files. Each thread locks one file and then deadlocks while trying to lock the
other file.

public void run ()
{

St r ing n=Thread . currentThread () . getName () ;
int num= In t eg e r . pa r se In t (n) ;
i f (num%2==0)

wr i t e (a , b) ;
else

wr i t e (b , a) ;
}

public void wr i t e (Object from , Object to)
{

. . .
synchronized (from) {

. . .
i f (hash . conta in s (to)) {

System . out . p r i n t l n (” deadlock on ”+to) ;
. . .

}
else {

synchronized (to) {

// here the copying i s be ing done .
hash . remove (from) ;

}
}

}
}

135

Figure A.12: CORE’s fix for the Deadlock program.

public void run () {
St r ing n = Thread . currentThread () . getName () ;
int num = In t eg e r . pa r se In t (n) ;
synchronized (b) {

i f (num % 2 == 0) wr i t e (a , b) ;
else wr i t e (b , a) ;

}

}

136

Figure A.13: In Lottery the methods generate, present and record race on the class
level variable randomNumber.

public synchronized void run () {

int i = 0 ;
while (i != numOfUsers) {

generate () ;
for (i = 0 ; i < numOfUsers ; i ++) {

i f (h i s t o r y [i] == randomNumber) break ;
}

}

pre sent () ;
r ecord () ;

}

protected synchronized void generate () {
generated [userNumber] = randomNumber = (long) (Math . random

() ∗

Math . pow (10 , MAX DIGITS)) ;
}

protected synchronized void pre sent () {
System . out . p r i n t (” user ” + userNumber + ” as s i gned ” +

(presented [userNumber] = randomNumber) + ” . ”) ;
}

protected synchronized void record () {
h i s t o r y [userNumber] = randomNumber ;

}

137

Figure A.14: CORE’s fix for the Lottery program.

public synchronized void run () {

int i = 0 ;
synchronized (generated) {

while (i != numOfUsers) {
generate () ;
for (i = 0 ; i < numOfUsers ; i ++) {

i f (h i s t o r y [i] == randomNumber) break ;
}

}
pre sent () ;
r ecord () ;

}
}

Figure A.15: All threads call the pingPong method containing the class level variable
pingPongP layer. Calling get while it is null generates a NullPointer Exception.

public void pingPong () {
try {

this . pingPongPlayer . g e t I () ;

PingPong newPlayer ;
newPlayer = this . pingPongPlayer ;
this . pingPongPlayer = null ;
long time = System . cur r en tT imeMi l l i s () ;
while ((System . cur r en tT imeMi l l i s () − time) < 50) ;
this . pingPongPlayer = newPlayer ;

} catch . . . { . . . }

}

public void run () {
this . ping () ;

}

public void ping () {

bg . pingPong () ;
}

138

Figure A.16: CORE’s fix for the Pingpong program.

public void ping () {
synchronized (bg) {

bg . pingPong () ;
}

}

Figure A.17: In the concurrent linked list implementation, a race occurs within the
insert method.

public void i n s e r t (Object x , MyLinkedList Itr p) {

i f (p != null && p . cu r r en t != null) {
MyListNode tmp ;
synchronized (this) {

tmp = new MyListNode (x , p . cu r r en t . next) ;
}
p . cu r r en t . next = tmp ;

}

}

Figure A.18: CORE fixes the data race in the insert method by synchronizing it.

public void i n s e r t (Object x , MyLinkedList Itr p) {

i f (p != null && p . cu r r en t != null) {
MyListNode tmp ;
synchronized (this) {

tmp = new MyListNode (x , p . cu r r en t . next) ;
p . cu r r en t . next = tmp ;

}
}

}

139

Figure A.19: In the Readers-Writers program, a data race occurs where a reader is
active when a writer is writing. This can cause a java.lang.

IllegalMonitorStateException to be thrown from within the beforeRead method.

protected void beforeRead () {
try {

++ wait ingReaders ;
while (! a l lowReader ()) {

try {
wait () ;

} catch (Inter ruptedExcept ion i e) {
−− wait ingReaders ;
}

}
−− wait ingReaders ;

} catch (Exception e) {
RWVSNDriver . goodRun = fa l se ;

}
}

Figure A.20: CORE fixed the exception and race by synchronizing the beforeRead

method.

protected synchronized void beforeRead () {
try {
++ wait ingReaders ;
while (! a l lowReader ()) {

try {

wait () ;
} catch (Inter ruptedExcept ion i e) {
−− wait ingReaders ;
}

}
−− wait ingReaders ;
} catch (Exception e) {

RWVSNDriver . goodRun = fa l se ;
}

}

140

Figure A.21: The enq method in Buffer has a notifyvsnotifyall bug.

public synchronized void enq (Object newObj) . . . {

. . .
i f (conso leOut) {

p r i n tBu f f e r () ;
}
. . .
this . n o t i f y () ;

}

Figure A.22: In StringBuffer, the append and delete methods can interfere and cause
a data race on the count variable. In general StringBuffer is missing statment level
locking.

public synchronized S t r i ngBu f f e r append (S t r i ngBu f f e r sb) {
. . .
sb . getChars (0 , len , value , count) ;

count = newcount ;
return this ;

}

public synchronized S t r i ngBu f f e r d e l e t e (int s t a r t , int end)
{
. . .

i f (l en > 0) {
i f (shared)

copy () ;
System . arraycopy (. . .) ;
count −= len ;
}
return this ;

}

141

Figure A.23: In cache4j, two threads can interfere and cause a crash on the sleep

variable.

s l e e p = true ;

try {
s l e ep (c l e a n I n t e r v a l) ;

} catch (Throwable t){
} f ina l ly {

s l e e p = fa l se ;
}

synchronized (this) {
i f (s l e e p) {

i n t e r r up t () ;
}

}

142

Bibliography

[1] Abrial, J. The B Book: Assigning Programs to Meaning. Cambridge University

Press, 1996.

[2] Acree, A. T., Budd, T. A., DeMillo, R. A., Lipton, R. J. and Say-

ward, F. G. Mutation analysis. Tech. rep., GIT-ICS-79/08, School of Informa-

tion and Computer Science, Georgia Institute of Technology, Atlanta, GA, Sep.

1979.

[3] Anand, S., Păsăreanu, C., and Visser, W. JPF-SE: A symbolic execution

extension to Java PathFinder. Tools and Algorithms for the Construction and

Analysis of Systems (2007), 134–138.

[4] Arcuri, A. On the Automation of Fixing Software Bugs. In Proc. of Interna-

tional Conference on Software Engineering (ICSE’08) (2008), IEEE, pp. 1003–

1006.

[5] Arcuri, A. Evolutionary repair of faulty software. Applied Software Computing

11, 4 (2011), 3494–3514.

[6] Arcuri, A., and Fraser, G. On parameter tuning in search based software

engineering. Search Based Software Engineering (2011), 33—-47.

143

[7] Arcuri, A., and Yao, X. A novel co-evolutionary approach to automatic

software bug fixing. In Proc. of the IEEE Congress on Evolutionary Computation

(CEC’08) (2008), IEEE, pp. 162–168.

[8] Attie, P., and Saklawi, J. Model and program repair via sat solving. Arxiv

preprint arXiv:0710.3332 19, 6 (2007), 29.

[9] Baker, P., Harman, M., Steinhofel, K., and Skaliotis, A. Search-

based approaches to the component selection and prioritization problem. In

Proc. of the IEEE International Conference on Software Maintenance (ICSM’06)

(2006), IEEE Computer Society, pp. 176–185.

[10] Beasley, D., Bull, D., and Martin, R. An overview of genetic algorithms:

Part 1 fundamentals. University Computing 15, 2 (1993), 58–69.

[11] Bradbury, J., Kelk, D., and Green, M. Effectively using search-based

software engineering techniques within model checking and its applications. In

Proc. of the 1st International Workshop on Combining Modelling and Search-

Based Software Engineering (CMSBSE 2013) (May 2013), pp. 67–70.

[12] Buccafurri, F., Eiter, T., Gottlob, G., and Leone, N. Combining

abduction and model checking techniques for repair of concurrent programs.

Periodica Polytechnica, Electrical Engineering 42, 1 (1998), 91–101.

[13] Busetti, F. Genetic algorithms overview. Teknik Teblig (2002), 1–13.

[14] Chew, L., and Lie, D. Kivati: fast detection and prevention of atomicity

violations. In Proc. of the 5th European Conference on Computer Systems (Eu-

roSys’10) (2010), ACM Press, pp. 307–320.

[15] ClearSy. Atelier-B Proof Obligation Reference Manual Ver. 3.7. ClearSy, 2009.

144

[16] Conway, C., Namjoshi, K., Dams, D., and Edwards, S. Incremental

algorithms for inter-procedural analysis of safety properties. In Proc. of the

17th International Conference on Computer Aided Verification (CAV’05) (2005),

Springer, pp. 387–400.

[17] Cordy, J., Halpern, C., and Promislow, E. Txl: A rapid prototyping sys-

tem for programming language dialects. In Proc. of the International Conference

on Computer Languages (ICCL’88) (1988), IEEE, pp. 280–285.

[18] d’Amorim, M., Lauterburg, S., and Marinov, D. Delta execution for effi-

cient state-space exploration of object-oriented programs. Software Engineering,

IEEE Transactions on 34, 5 (2008), 597–613.

[19] DeAmorim, M., Sobeih, A., and Marinov, D. Optimized Execution of

Deterministic Blocks in Java PathFinder, vol. 4260. Springer, 2006, pp. 549–

567.

[20] Do, H., Elbaum, S., and Rothermel, G. Supporting controlled experi-

mentation with testing techniques: An infrastructure and its potential impact.

Empirical Software Engineering 10, 4 (2005), 405–435.

[21] Dwyer, M., Elbaum, S., Person, S., and Purandare, R. Parallel ran-

domized state-space search. In Proc. of the 29th International Conference on

Software Engineering (ICSE’07) (2007), IEEE, pp. 3–12.

[22] Dwyer, M., Hatcliff, J., Robby, R., Pasareanu, C., and Visser, W.

Formal software analysis emerging trends in software model checking. In Proc.

of the Conference on Future of Software Engineering (FOSE’07) (2007), vol. 19,

IEEE, pp. 120–136.

145

[23] Dwyer, M. B., Person, S., and Elbaum, S. Controlling factors in evaluat-

ing path-sensitive error detection techniques. In Proce. of the 14th International

Symposium on Foundations of Software Engineering (FSE’06) (2006), ACM,

pp. 92–104.

[24] Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., and Ur, S. Mul-

tithreaded Java program test generation. IBM Systems Journal 41, 1 (2002),

111–125.

[25] EI-Fakih, K., Yevtushenko, N., and Bochmann, G. FSM-based incre-

mental conformance testing methods. Software Engineering, IEEE Transactions

on 30, 7 (July 2004), 425–436.

[26] Eytani, Y., Havelund, K., Stoller, S. D., and Ur, S. Toward a Frame-

work and Benchmark for Testing Tools for Multi-Threaded Programs. Concur-

rency and Computation: Practice & Experience 19, 3 (2006), 267–279.

[27] Ferreira, M., and Gomez-Pulido, J. Detecting protocol errors using parti-

cle swarm optimization with Java PathFinder. In Proc. of the High Performance

Computing & Simulation Conference (HPCS’08) (2008), ACM Press, pp. 319–

–325.

[28] Fonseca, C., and Fleming, P. An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary Computation 3, 1 (1995), 1–16.

[29] Forrest, S., Nguyen, T., Weimer, W., and Le Goues, C. A Genetic

Programming Approach to Automated Software Repair. In Proc. of Genetic And

Evolutionary Computation Conference (GECCO’09) (2009), pp. 947–954.

[30] Gligoric, M., Gvero, T., Lauterburg, S., Marinov, D., and Khur-

shid, S. Optimizing generation of object graphs in Java PathFinder. In Proc.

146

of the International Conference on Software Testing Verification and Validation

(ICST’09) (2009), IEEE, pp. 51–60.

[31] Hari, K., and Srinidhi, V. Deterministic dynamic deadlock detection and

recovery. ACM Trans. Program. Lang. Syst. (2012), 44.

[32] Harman, M. The current state and future of search based software engineering.

In Proc. of the Conference on the Future of Software Engineering (FOSE’07)

(2007), IEEE Computer Society, pp. 342–357.

[33] Harman, M. Search based software engineering for program comprehension. In

Proc. of the Conference on Program Comprehension (ICPC’07) (2007), IEEE,

pp. 3–13.

[34] Harman, M. Automated Patching Techniques: The Fix is in: Technical Per-

spective. Communications of the ACM 53, 5 (May 2010).

[35] Harman, M. Why the Virtual Nature of Software Makes it Ideal for Search

Based Optimization. In Proc. of the 13th International Conference on Fundamen-

tal Approaches to Software Engineering (FASE’10) (2010), Springer, pp. 1–12.

[36] Havelund, K. Using Runtime Analysis to Guide Model Checking of Java Pro-

grams, vol. 1885. Springer-Verlag, 2000, pp. 245–264.

[37] Henzinger, T., Jhala, R., Majumdar, R., and Sanvido, M. Extreme

model checking. In Proc. of the International Symposium on Verification - Theory

and Practice, 2003 (2003), Springer, pp. 332–358.

[38] Hovemeyer, D., and Pugh, W. Finding Bugs is Easy. ACM SIGPLAN

Notices 39, 12 (Dec. 2004), 92–106.

147

[39] Huang, J., and Zhang, C. Persuasive prediction of concurrency access anoma-

lies. In Proc. of the International Symposium on Software Testing and Analysis

(ISSTA’11) (2011), ACM Press, pp. 144–154.

[40] Jin, G., Song, L., Zhang, W., Lu, S., and Liblit, B. Automated

atomicity-violation fixing. In Proc. of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’11) (2011), ACM

Press, pp. 389–400.

[41] Jin, G., Zhang, W., Deng, D., Liblit, B., and Lu, S. Automated

concurrency-bug fixing. In Proc. of the Symposium on Operating System De-

sign and Implementation (OSDI’12) (2012).

[42] Joshi, P., Naik, M., Park, C., and Sen, K. CalFuzzer: An Extensible

Active Testing Framework for Concurrent Programs. In Proc. of the 21st Inter-

national Conference on Computer Aided Verification (CAV’09) (2009), Springer,

pp. 675–681.

[43] Kelk, D., Jalbert, K., and Bradbury, J. Automatically Repairing Con-

currency Bugs with ARC. In Proc. of the 1st International Conference on Mul-

ticore Software Engineering, Performance, and Tools (MUSEPAT 2013) (2013),

pp. 73–84.

[44] Koza, J., and Poli, R. Genetic programming. Search Methodologies (2005),

127–164.

[45] Krena, B., Letko, Z., Tzoref, R., Ur, S., and Vojnar, T. Healing data

races on-the-fly. In Proc. of the 2007 ACM workshop on Parallel and Distributed

Systems: Testing and Debugging (PADTAD’07) (2007), ACM Press, pp. 54–64.

148

[46] Křena, B., Letko, Z., Vojnar, T., and Ur, S. A Platform for Search-

based Testing of Concurrent Software. In Proc. of the 8th Workshop on Parallel

and Distributed Systems Testing, Analysis, and Debugging (PADTAD’10) (2010),

ACM Press, pp. 48–58.

[47] Lakhotia, K., McMinn, P., and Harman, M. Automated test data gener-

ation for coverage: Haven’t we solved this problem yet? In Proc. of the Testing:

Academic and Industrial Conference-Practice and Research Techniques (TAIC

PART’09) (2009), IEEE, pp. 95–104.

[48] Lauterburg, S., Sobeih, A., Marinov, D., and Viswanathan, M. Incre-

mental state-space exploration for programs with dynamically allocated data. In

Proc. of the 13th International Conference on Software Engineering (ICSE’08)

(2008), ACM Press, pp. 291–300.

[49] Le Goues, C., Dewey-vogt, M., Forrest, S., and Weimer, W. A sys-

tematic study of automated program repair: Fixing 55 out of 105 bugs for 8

dollars each. In Proc of the 34th International Conference on Software Engineer-

ing (ICSE’12) (2012), IEEE, pp. 3–13.

[50] Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. GenProg:

A generic method for automated software repair. Software Engineering, IEEE

Transactions on 38, 99 (2012), 54–72.

[51] Le Goues, C., Weimer, W., and Forrest, S. Representations and opera-

tors for improving evolutionary software repair. In Proc. of the 14th International

Conference on Genetic and Evolutionary Computation Conference (GECCO’12)

(2012), ACM Press, pp. 959–966.

149

[52] Lenguajes, D., Gomez-Pulido, J., Ferreira, M., and Alba, E. Find-

ing deadlocks in large concurrent Java programs using genetic algorithms. In

Proc. of the 10th Annual Conference on Genetic and Evolutionary Computation

(GECCO08) (2008), ACM Press, pp. 1735–1742.

[53] Letko, Z., Vojnar, T., and Křena, B. AtomRace: Data race and atomicity

violation detector and healer. In Proc. of the 6th Workshop on Parallel and

Distributed Systems: Testing, Analysis, and Debugging (PADTAD’08) (2008),

ACM Press, p. 7.

[54] Lin, Y., and Kulkarni, S. Automatic repair for multi-threaded program with

deadlock/livelock using maximum satisfiability, 2013.

[55] Liu, P., Tripp, O., and Zhang, C. Grail: context-aware fixing of concur-

rency bugs. In Proc. of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering (FOSE 2014) (2014), ACM, pp. 318–329.

[56] Liu, P., and Zhang, C. Axis: Automatically fixing atomicity violations

through solving control constraints. In Proc. of the International Conference

on Software Engineering (ICSE’12) (2012), IEEE Press, pp. 299–309.

[57] Liu, P., Zhang, C., Wang, Y., and Kelly, T. A unified approach to

eliminating concurrency bugs via control synthesis, 2013.

[58] Lucia, B., Ceze, L., and Strauss, K. Colorsafe: Architectural support for

debugging and dynamically avoiding multi-variable atomicity violations. In ACM

SIGARCH Computer Architecture News (2010), vol. 38, ACM Press, pp. 222–

233.

150

[59] Lucia, B., Devietti, J., Strauss, K., and Ceze, L. Atom-Aid: Detecting

and surviving atomicity violations. In Proc. of the 35th International Symposium

on Computer Architecture (ISCA’08) (2008), IEEE, pp. 277–288.

[60] Musuvathi, M., Qadeer, S., and Ball, T. CHESS: A systematic testing

tool for concurrent software. Redmond: Microsoft Research Technical Report,

MSRTR-2007 149, MSR-TR-2007-149 (2007), 16.

[61] Naik, M., and Aiken, A. Conditional Must not Aliasing for Static Race

Detection. In Proc. of the 34th annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL’07) (Jan. 2007), vol. 42, ACM

Press, pp. 327–338.

[62] Naik, M., Park, C., Sen, K., and Gay, D. Effective static deadlock detec-

tion. In Proc. of the IEEE 31st International Conference on Software Engineering

(ICSE’09) (2009), IEEE, pp. 386–396.

[63] Nguyen, T., Weimer, W., Le Goues, C., and Forrest, S. Using Execu-

tion Paths to Evolve Software Patches. In Proc. of 2nd International Workshop

on Search-Based Software Testing (SBST 2009) (2009), pp. 152–153.

[64] Nir-Buchbinder, Y., and Ur, S. Contest listeners: A concurrency-oriented

infrastructure for java test and heal tools. In Proc. of the 4th International Work-

shop on Software Quality Assurance (SOQUA’07) (2007), ACM Press, pp. 9–16.

[65] Park, C.-S., and Sen, K. Randomized active atomicity violation detection in

concurrent programs. In Proc. of the 16th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (FSE’08) (2008), ACM Press,

pp. 135–145.

151

[66] Park, S., Vuduc, R. W., and Harrold, M. J. Falcon: Fault localization in

concurrent programs. In Proc. of the 32nd ACM/IEEE International Conference

on Software Engineering (ICSE’10) (2010), ACM Press, pp. 245–254.

[67] Pradel, M., and Gross, T. R. Fully automatic and precise detection of

thread safety violations. In ACM SIGPLAN Notices (2012), vol. 47, ACM,

pp. 521–530.

[68] Prvulovic, M. Cord: Cost-effective (and nearly overhead-free) order-recording

and data race detection. In Proc. of the 12th International Symposium on High-

Performance Computer Architecture (HPCA’06) (2006), IEEE, pp. 232–243.

[69] Qi, Y., Mao, X., Lei, Y., Dai, Z., and Wang, C. Does genetic programming

work well on automated program repair? In Proc. of the 5th International Con-

ference on Computational and Information Sciences (ICCIS’13) (2013), IEEE,

pp. 1875–1878.

[70] Rungta, N., and Mercer, E. A meta heuristic for effectively detecting con-

currency errors. In Proc. of the 4th International Haifa Verification Conference

(HVC’08) (2008), Springer, pp. 23–37.

[71] Schneider, S. The B-Method: An Introduction. Palgrave, New York, 2001.

[72] Schulte, E., Fry, Z., Fast, E., Forrest, S., and Weimer, W. Software

mutational robustness: Bridging the gap between mutation testing and evolu-

tionary biology. Tech. rep., University of Virginia, Stanford and the University

of New Mexico, Albuquerque, USA, 2012.

[73] Sen, K. Race directed random testing of concurrent programs. In ACM SIG-

PLAN Notices (2008), vol. 43, ACM Press, pp. 11–21.

152

[74] Smirnov, A., and Chiueh, T.-c. Dira: Automatic detection, identification

and repair of control-hijacking attacks. In In NDSS (2005).

[75] Smolin, L. The fate of black hole singularities and the parameters of the

standard models of particle physics and cosmology. arXiv preprint gr-qc/9404011

(1994).

[76] Smolin, L. Scientific alternatives to the anthropic principle. Universe or Mul-

tiverse (2007), 323–366.

[77] Smolin, L. A perspective on the landscape problem. Foundations of Physics

43, 1 (2013), 21–45.

[78] Sobeih, A., and Lauterburg, S. Incremental state space exploration in

J-Sim. Tech. rep., Department of Computer Science, University of Illinois at

Urbana Champaign, 2007.

[79] Sokolsky, O., and Smolka, S. Incremental model checking in the modal

mu-calculus. In Computer Aided Verification (CAV’94), D. Dill, Ed., vol. 818 of

Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 1994, pp. 351–

363.

[80] Staunton, J., and Clark, J. Searching for Safety Violations Using Estima-

tion of Distribution Algorithms. IEEE, 2010, pp. 212–221.

[81] Staunton, J., and Clark, J. Applications of model reuse when using es-

timation of distribution algorithms to test concurrent software. Search Based

Software Engineering (2011), 97–111.

[82] Ujma, M., and Shafiei, N. JPF-Concurrent: An extension of Java PathFinder

for java.util.concurrent. arXiv preprint arXiv:1205.0042 (2012).

153

[83] Veeraraghavan, K., Chen, P. M., Flinn, J., and Narayanasamy, S.

Detecting and surviving data races using complementary schedules. In Proc. of

the 23rd ACM Symposium on Operating Systems Principles (SOSP’11) (2011),

ACM Press, pp. 369–384.

[84] Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F. Model

checking programs. In Proc. of the 15th IEEE International Conference on Auto-

mated Software Engineering (ASE 2000) (2000), vol. 10, IEEE Computer Society,

pp. 3–11.

[85] von Praun, C., and Gross, T. R. Object race detection. ACM SIGPLAN

Notices 36, 11 (2001), 70–82.

[86] Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., and Mahlke, S. A.

Gadara: Dynamic deadlock avoidance for multithreaded programs. In OSDI

(2008), vol. 8, pp. 281–294.

[87] Weimer, W., Forrest, S., Le Goues, C., and Nguyen, T. Automatic

program repair with evolutionary computation. Communications of the ACM

53, 5 (2010), 109–116.

[88] Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S. Automatically

finding patches using genetic programming. In Proc. of the 31st International

Conference on Software Engineering (ICSE’09) (2009), IEEE Computer Society,

pp. 364–374.

[89] White, D., Arcuri, A., and Clark, J. Evolutionary improvement of pro-

grams. IEEE Transactions on Evolutionary Computation 15, 4 (2011), 1–24.

[90] Whitley, D. An overview of evolutionary algorithms: Practical issues and

common pitfalls. Information and Software Technology 43, 14 (2001), 817–831.

154

[91] Wilkerson, J., and Tauritz, D. Coevolutionary Automated Software Cor-

rection. In Proc. of the Genetic And Evolutionary Computation Conference

(GECCO’10) (2010), pp. 1391–1392.

[92] Wu, J., Cui, H., and Yang, J. Bypassing races in live applications with

execution filters. In OSDI (2010), pp. 135–149.

155

