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Abstract

Mutation testing has traditionally been used to evaluate the e�ectiveness of test suites

and provide con�dence in the testing process. Mutation testing involves the creation of

many versions of a program each with a single syntactic fault. A test suite is evaluated

against these program versions (i.e., mutants) in order to determine the percentage

of mutants a test suite is able to identify (i.e., mutation score). A major drawback

of mutation testing is that even a small program may yield thousands of mutants

and can potentially make the process cost prohibitive. To improve the performance

and reduce the cost of mutation testing, we proposed a machine learning approach to

predict mutation score based on a combination of source code and test suite metrics.

We conducted an empirical evaluation of our approach to evaluated its e�ectiveness

using eight open source software systems.

Keywords: machine learning, mutation testing, software metrics, support vector

machine, test suite e�ectiveness
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Chapter 1

Introduction

1.1 Motivation

A large branch of Software Engineering is software testing and veri�cation. In 2002, a

survey showed that inadequate software testing cost the United States approximately

$59.5 billion annually [Res02]. This indicates a need to optimize the e�ectiveness and

e�ciency of software testing and veri�cation in Software Engineering.

From a software testing perspective, the core artifacts of software development

are the source code and the test suite. The source code is composed of many source

code units (i.e., methods, classes, functions) while the test suite is composed of many

test code units (i.e., test cases and unit tests). As software systems mature over-time

these artifacts evolve. For example, during the software development life cycle, speci�c

modules and source code units change to accommodate new features or �xes. If source

code units change during development the accompanying tests must also be updated

to ensure that the change is adequately tested. Software developers have a number of

software testing methodologies and approaches at their disposal to verify the source

code of software systems. An essential aspect of most software testing methodologies

1



is unit testing � a white-box testing technique that evaluates source code units to

ensure they behave correctly when test code units are applied.

A major challenge in software testing is the assessment of test suites and determining

if a given test suite is e�ective. An e�ective test suite is �. . . one that is capable of

detecting all real bugs� [Wey93] and the purpose of a test suite is to increase con�dence

that out source code functions correctly. Several techniques exist that measure code

coverage (e.g., branch, statement, path) being exercised by a test suite [ZHM97].

Developers are able to assess that the source code units are being tested using one of

the coverage criteria provided by a code coverage technique. Unfortunately, simple

code coverage might not be an adequate indicator of test suite e�ectiveness depending

on the technique and coverage criteria used [NA09,GJ08].

One approach to determine the e�ectiveness of a test suite is to use mutation

testing � a white box coverage technique that assesses the ability of tests to detect

mutant faults. Speci�cally, mutation testing uses a set of mutation operators to

generate faulty versions of a software system's source code called mutants. Mutation

operators are created based on an existing fault taxonomy and each operator usually

corresponds to a speci�c type of fault. Andrews et al. showed that mutants potentially

could be used as substitutes for real faults [ABLN06]. A test suite is evaluated against

a set of mutants to determine the mutation score. The mutation score is de�ned as

the percentage of non-equivalent mutants that are detected (i.e., killed) by a test

suite. The better a test suite, the more mutants will be killed and thus the higher the

mutation score.

A major drawback of mutation testing is that even a small software system may yield

hundreds or thousands of mutants, potentially making the process cost prohibitive in

comparison to other coverage metrics. For example, one study produced approximately

2



2000 mutants for a 5000 Source Lines of Code (SLOC) software system (jtopas) and

approximately 105000 mutants for a 30000 SLOC software system (xstream) [SZ09a].

1.2 Problem

Mutation testing o�ers a highly e�ective approach for determining the e�ectiveness

of a test suite but at high cost. The adoption of mutation testing in industry has

been slow due to the performance/scalability issues and tool usability (i.e., integration

into a standard software development life cycle) [OU01]. Three approaches have been

proposed to improve mutation testing performance and scalability [OU01]:

1. �Do fewer� approach: This category of optimizations aims to decrease the

computational cost of mutation testing by reducing the number of mutants that

a test suite is evaluated against. The most popular example from this category

is selective mutation � the use of a subset of mutation operators that have been

empirically shown to be as e�ective as using an entire set of operators [OLR+96].

2. �Do smarter� approach: This category of optimizations aims to decrease the

cost of mutation testing by improving the actual mutation testing technique. For

example, weak mutation �. . . is an approximation technique that compares the

internal states of mutant and original program immediately after execution of the

mutated portion of the code (instead of comparing the program output)� [OU01].

3. �Do faster� approach: This category of optimizations aims to reduce the cost

of mutation testing by focusing on performance. For example, one �do faster�

approach improves compilation time using schema-based mutation � �. . . encodes

all mutations into one source level program . . . � [OU01].
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As an alternative to the above approaches, we propose a �do fewer and smarter�

approach for mutation testing at the unit level. When mutation testing is used for the

creation or improvement of a test suite, the test suite will often have to be applied

to the mutants in an iterative fashion as tests are added, removed and modi�ed.

Furthermore, the e�ects on the mutation score after each iteration have to be observed.

We propose to replace at least some of the mutation testing with mutation score

prediction and thus decrease the number of mutants that have to be evaluated using

a test suite. Our proposed approach uses machine learning to predict the mutation

score based on a combination of source code and test suite metrics of the code unit

under test.

1.3 Thesis Statement and Scope of Research

Thesis Statement: The use of source code and test suite metrics in com-

bination with machine learning techniques can accurately predict mutation

scores. Furthermore, the predictions can be used to reduce the performance

cost of mutation testing when used to iteratively develop test suites.

Essentially, this thesis presents an approach that predicts the mutation scores of

code units. This approach is ideal for the iterative creation or improvement of a test

suite as it mitigates the amount of time spent on mutation testing (i.e., less testing of

mutants).

The scope of this thesis is limited to open source Java software systems. We have

selected this scope because mutation testing of Java software systems is fairly mature

and there are a number of existing mutation tools for Java [JH11].
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1.4 Contributions

This thesis makes the following contributions to the �eld of mutation testing, software

testing and software quality assurance:

� An approach to predict the mutation scores of source code units of software

systems using a machine learning technique.

� Identify source code and test suite metrics that are capable of describing source

code units with respect to mutation score prediction.

� An empirical evaluation of the accuracy of the developed approach with respect

to the identi�ed source code and test suite metrics.

� An empirical evaluation of the accuracy of the developed approach with respect

to prediction of unknown data within a software system and across software

systems.

� Identify a generalizable set of parameters for our machine learning technique to

maximize prediction performance over di�erent software systems.

� Demonstrate that traditional training/testing data ratios are not necessary to

achieve near optimal prediction performance of mutation scores.

1.5 Organization of Thesis

In this chapter we have outlined our motivation in Section 1.1 and the problem in

Section 1.2. We presented our thesis statement in Section 1.3 along with a general set

of contributions for this thesis in Section 1.4. The remaining chapters of this thesis

are organized as follows:
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� Chapter 2: We describe the background material and concepts used in this

thesis. We look at uses and details of machine learning on how it can be used

for classi�cation problems. We illustrate what mutation testing is and the

advantages and disadvantages of using it. We �nally cover software metrics and

their uses in understanding software systems and complexity.

� Chapter 3: We describe our overall approach to mutation score prediction. We

cover each step of our approach all while detailing the selected tools used. We

discuss related work in the area of predictions using source code metrics.

� Chapter 4: We describe our experimental setup as well as our eight selected test

subjects. We conduct a number of experiments to evaluate our approach along

with discussions.

� Chapter 5: We summarize the thesis and mentioned the contributions. We

outline future work as well as limitations on the thesis.
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Chapter 2

Background

In this chapter we describe the background techniques and tools used in our research.

Speci�cally, we cover mutation testing in Section 2.1, machine learning in Section 2.2

and software metrics in Section 2.3.

2.1 Mutation Testing

As mentioned in Section 1.1, techniques exists that measure code coverage. Mutation

testing can be seen as a fault-based coverage technique that demonstrates the absence

of faults in a software system [DLS78, BDLS80]. Mutation testing makes use of

fault-based testing by generating a set of mutants, each representing a possible fault

in the software system. These mutants are then executed along with the test suite

with hopes that the test suite can detect the mutant's fault. If the fault is detected,

the test suite is e�ective enough to handle the detection of that speci�c bug. If the

fault goes undetected, the test suite ability to detect that speci�c bug is inadequate.

Using the results of mutation testing, it is possible to assess the adequacy of a test

suite � the e�ectiveness of the test suite of detecting bugs.
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Figure 2.1: The mutation testing process.

Figure 2.1 illustrates a general approach to mutation testing. Mutation testing uses

a set of mutation operators to generate faulty versions of a software system's source

code called mutants. A mutation operator applies a transformation to a software

artifact such that it now exhibits a fault (see Section 2.1.1.1 for examples). Mutation

operators are designed based on existing fault taxonomy, such that the generate

mutants represent real faults. Studies have indicated that mutants could be used as

substitutes for real faults [ABLN06,ABL05,NK11].

The transformation of a software artifact to create a mutant is typically a small/s-

ingle change as most bugs follow the Competent Programmer Hypothesis [ABD+79]

which suggests that developers write software that is nearly correct. Also the Cou-

pling E�ect Hypothesis [O�92] suggests that a large percent of complex faults can be

detected if all the simple faults can be detected. These two hypotheses strengthen

the use of small/single changes for mutation operators and why mutation testing is

adequate for evaluating test suite e�ectiveness.

mutation score =
killed mutants

total mutants− equivalent mutants
(2.1)
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After all the mutants have been generated, a testing approach is used to evaluate

the mutants against the test suite. If a mutant is detected by the test suite, the

mutant is killed. If undetected, we say it survived. There are some cases where the

mutant generated is equivalent, such that the behaviour of the mutant is the same

as the original system. These equivalent mutants pose a problem as they cannot be

killed using the given test suite. Manual inspection of mutants to determine if they

are equivalent is not feasible for a large number of mutants. A mutation score (see

Equation 2.1) is given to each source code unit based on the number of percentage of

non-equivalent mutants they killed. The mutation score indicates how e�ective a test

suite is at detecting faults in terms of mutation fault-based testing adequacy.

Mutation testing has traditionally been used as a coverage technique to evaluate

the e�ectiveness of test suites and provide con�dence in the testing process [JH11]. For

over 30 years, mutation testing has been applied to software written in programming

languages including C [DM96, JH08], Fortran [KO91] and Java [MKO02,BCD06].

Furthermore, mutation testing has also been applied to non-programming artifacts

such as formal speci�cation languages [ABM98], markup languages [PO10] and spread-

sheets [AE09].

The following discussion presents the two major criticisms of mutation testing,

accompanied with some of the research has been done to alleviate these to some

degree:

� Equivalent Mutants: As already described, these are mutants that are seman-

tically the same as the original version of the software system. An equivalent

mutant will not be killed by the test suite and this results in lower than expected

mutation scores. These are problematic as mutation score is in�uenced by

these mutants though they are di�cult/costly to detect. Schuler and Zeller

proposes a solution in determining whether a surviving mutant is equivalent or

9



not using impact analysis [SZ10]. Their approach observes the impact of the

original program's execution against that of the mutant in respect to control

�ow and data. Their experiments showed that using statement coverage allowed

them to achieved a classi�cation precision of 75% and a recall of 56%. In their

previous work they also considered the use of the impact of dynamic invariants

to uncover equivalent mutants [SDZ09]. O�utt and Craft used compiler opti-

mization techniques and were able to detect approximately 10% of equivalent

mutations [OC94].

� Performance Cost: Again as we have already mentioned mutation testing is a

very costly coverage technique as many mutants must be evaluated against the

test suite. The mutant representation, selection of tests, and strategies are all

aspects of the mutation testing process that the research community are exploring

to reduce cost. Mutation sampling can be used to reduce the evaluation e�orts

by only considering a random subset of the generated mutants [Bud80]. Untch

et al. introduced a mutation runtime technique call Mutant Schema Generation

that represented all possible mutants in a single meta-program [UOH93]. O�utt

et al. were able to perform mutation testing at the bytecode level, e�ectively

avoiding recompilations of the generated mutants [OMK04].

2.1.1 Mutation Operators

As previously mentioned, mutation operators de�ne transformations that attempts to

introduce faults. Focusing on Java, there are two common sets of mutation operators:

method-level and class-level. These two sets of mutation operators are described in

the following sections.
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Operator Description
AOR Arithmetic Operator Replacement
AOI Arithmetic Operator Insertion
AOD Arithmetic Operator Deletion
ROR Relational Operator Replacement
COR Conditional Operator Replacement
COI Conditional Operator Insertion
COD Conditional Operator Deletion
SOR Shift Operator Replacement
LOR Logical Operator Replacement
LOI Logical Operator Insertion
LOD Logical Operator Deletion
ASR Assignment Operator Replacement

Table 2.1: The set of method-level mutation operators from the MuJava mutation
testing tool [MOK05,MO05b].

Original Program

class Counter {

Integer current = new Integer(1);

Integer limit = new Integer(10);

public Integer add() throws Exception {

if (this.current > this.limit) {

throw new Exception();

}

return ++this.current;

}

}

ROR−−−→

Mutant Program

class Counter {

Integer current = new Integer(1);

Integer limit = new Integer(10);

public Integer add() throws Exception {

if (this.current < this.limit) {

throw new Exception();

}

return ++this.current;

}

}

Figure 2.2: Example application of the ROR method-level mutation operator.

2.1.1.1 Method-Level Mutation Operators

We �rst consider the set of method-level mutation operators found in the mutation

testing tool MuJava [MOK05], as they are well documented and designed. These

mutation operators apply source transformations that modify expressions at the

method-level. These operators can cause unexpected data values to occur, as well as

adjust the outcome of conditions. A set of method-level mutation operators are listed

in Figure 2.1 [MO05b].
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Original Program

class Counter {

Integer current = new Integer(1);

Integer limit = new Integer(10);

public Integer add() throws Exception {

if (this.current > this.limit) {

throw new Exception();

}

return ++this.current;

}

}

AOI−−−→

Mutant Program

class Counter {

Integer current = new Integer(1);

Integer limit = new Integer(10);

public Integer add() throws Exception {

if (this.current > this.limit--) {

throw new Exception();

}

return ++this.current;

}

}

Figure 2.3: Example application of the AOI method-level mutation operator.

To illustrate the e�ects of a method-level operator, consider the Relational Operator

Relational (ROR) mutation operator. This mutation operator replaces a relational

operator (i.e., >, >=, ==, !=, =< or <) with another type of relational operator as seen

in Figure 2.2. Figure 2.3 presents another example demonstrating the Arithmetic

Operator Insertion (AOI ) mutation operator. The remaining set of method-level

mutation operators function using a similar approach with other operators (i.e.,

conditional, shift, logical and assignment).

2.1.1.2 Class-Level Mutation Operators

We now look at the set of class-level mutation operators found in MuJava [MOK05,

MKO02]. These mutation operators apply source transformations that modify language

features at the class-level. These operators can allow objects to behave in unexpected

ways, as well as exposing design issues. Table 2.2 tabulates the class-level mutation

operators [MO05a].

To illustrate the e�ects of a class-level operator, we can look at the Member Variable

Initialization Deletion (JID) mutation operator. This mutation operator deletes an

instance variables initialization as sees in Figure 2.4. Figure 2.5 presents another

example demonstrating the Access Modi�er Change (AMC ) mutation operator. The

remaining set of class-level mutation operators function by inserting, deleting, and
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Group Operator Description
¬ AMC Access modi�er change
 IHD Hiding variable deletion
 IHI Hiding variable insertion
 IOD Overriding method deletion
 IOP Overriding method calling position change
 IOR Overriding method rename
 ISI super keyword insertion
 ISD super keyword deletion
 IPC Explicit call to a parent's constructor deletion
® PNC new method call with child class type
® PMD Member variable declaration with parent class type
® PPD Parameter variable declaration with child class type
® PCI Type cast operator insertion
® PCC Cast type change
® PCD Type cast operator deletion
® PRV Reference assignment with other comparable variable
® OMR Overloading method contents replace
® OMD Overloading method deletion
® OAC Arguments of overloading method call change
¯ JTI this keyword insertion
¯ JTD this keyword deletion
¯ JSI static modi�er insertion
¯ JSD static modi�er deletion
¯ JID Member variable initialization deletion
¯ JDC Java-supported default constructor creation
¯ EOA Reference assignment and content assignment replacement
¯ EOC Reference comparison and content comparison replacement
¯ EAM Acessor method change
¯ EMM Modi�er method change

Table 2.2: The set of class-level mutation operators from the MuJava mutation testing
tool [MOK05,MO05a].
The group column indicates the speci�c language feature of the mutation operator (¬: Encapsulation,

: Inheritance, ®: Polymorphism, ¯: Java-Speci�c Features).

changing certain elements in the class with respect to inheritance, polymorphism, and

Java-speci�c features.
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Original Program

class Counter {

Integer current = new Integer(1);

Integer limit = new Integer(10);

public Integer add() throws Exception {

if (this.current > this.limit) {

throw new Exception();

}

return ++this.current;

}

}

JID−−→

Mutant Program

class Counter {

Integer current = new Integer(1);

Integer limit;

public Integer add() throws Exception {

if (this.current > this.limit) {

throw new Exception();

}

return ++this.current;

}

}

Figure 2.4: Example application of the JID class-level mutation operator.

Original Program

class Counter {

Integer current = new Integer(1);

Integer limit = new Integer(10);

public Integer add() throws Exception {

if (this.current > this.limit) {

throw new Exception();

}

return ++this.current;

}

}

AMC−−−→

Mutant Program

class Counter {

Integer current = new Integer(1);

Integer limit = new Integer(10);

private Integer add() throws Exception {

if (this.current > this.limit) {

throw new Exception();

}

return ++this.current;

}

}

Figure 2.5: Example application of the AMC class-level mutation operator.

2.1.1.3 Other Mutation Operators

In addition to the two general sets of mutation operators just described, sets also exist

for speci�c domains (i.e., concurrency and security). Bradbury et al. presented a set

of concurrency mutation operators that is capable of creating concurrency faults (e.g.,

data races and deadlocks) [BCD06]. Shahrair and Zulkernine presented multiple sets

of mutation operators in the security domain for database injection [SZ08a], bu�er

over�ows [SZ08b], and cross site scripting [SZ09b]. O�utt et al. presented operators for

grammar-based testing [OAL06]. Furthermore, as mentioned earlier on in Section 2.1,

other domains where mutation testing has been applied have their own set of mutation

operators (i.e., spreadsheets, markup), however this is outside the scope of this thesis.
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2.1.2 Mutation Testing Tools

In the last decade, a number of mutation testing tools for the Java programming lan-

guage have emerged [JH11]. We present the following set of criteria that distinguishes

most of the tools from each other:

� Citation: The citation for the tool's publication/website.

� Inception Year: The year the tool was released to the public.

� Generation-Level: Mutations can be generated either at the source code or

bytecode level. Source code mutation generation requires re-compilation while

bytecode does not.

� Test Selection: Test selection indicates which unit test cases are performed

for each mutant. A naive approach simply runs all the unit test cases, while

convention based runs all tests based on a package/test name or de�ned anno-

tations. Coverage based approach only runs unit test cases that are directly

involved in the mutated source code, while a manual bases approach allows the

user to specify each unit test case.

� Mutant Insertion: Generated mutants are stored and ran against the selected

unit test cases. A naive approach stores the mutants on disk and creates a

new Java Virtual Machine for each mutant. A schmeta approach stores all

the mutants in a single class, and the mutants are enabled through runtime

�ags one at a time [UOH93]. An in-memory approach stores all the mutants in

memory which are then injected into the Java Virtual Machine by creating a new

classloader. An instrumentation approach stores the mutants in memory, but

injects them into the Java Virtual Machine directly using an instrumentation

application programming interface.
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� Method-Level: Whether or not a tool has a set of traditional method-level

mutation operators, as mentioned in Section 2.1.1.1.

� Class-Level: Whether or not a tool has a set of object-oriented class-level

mutation operators, as mentioned in Section 2.1.1.2.

� JUnit Support: Whether or not a tool has support for JUnit test cases (de

facto for unit testing Java [Bec].

� Command-Line: Whether or not a tool has support to be executed via a

Command-Line Interface (CLI).

� Structured Output: Whether or not a tool has support to output results in a

structure format (i.e., Extensible Markup Language (XML), Comma Separated

Values (CSV))

� Unit Scores: Whether or not a tool indicates the mutation score of individual

source code units (i.e., the mutation score of methods).

� Open Source: Whether or not a tool's source code is open source and freely

available to modify.

� Academic Tool: Whether or not a tool was developed from an academic

research group, otherwise industry or community developed.

� Special Feature: Whether or not a tools has a special feature that is unique

in mutation testing.

Using this criteria, we provide a comparison of a set of mutation testing tools

for the Java programming language in Table 2.3. We can see various aspects of the

mutation testing tools. For example, only Javalanche has access to a limited set of
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concurrency-level mutation operators while Jumble and Jester do not use a proper

form of the method- and class-level mutation operators.

2.2 Machine Learning

Machine learning is a branch of arti�cial intelligence that primarily focuses on the

ability to classify complex data. Given a data set with complex relationships, machine

learning algorithms can attempt to uncover patterns that characterize the data.

With the uncovered patterns and relationships it is then possible to make intelligent

predictions based on the data. For example, given historic data about the weather

(i.e., rain, wind speed, pressure, humidity, etc. . . ) we could use machine learning

techniques to make a prediction on whether it will rain or not tomorrow.

Machine learning algorithms are either a supervised or unsupervised learning

algorithm. The main di�erence between the two types of algorithms is whether

one can correctly classify data prior to using the algorithm. In situations where

no data classi�cation information is known about the data set, then a unsupervised

classi�cation algorithm could be used. Unsupervised learning algorithms aim to classify

the data based on density or clusters (e.g., k-mean clustering). Supervised learning

requires that an expert can classify some of the data to use for training. A supervised

learning algorithm creates a model that describes the training data. Unclassi�ed data

can then be passed through the model to see what classi�cation best �ts the data.

If one does not have any idea of what they are trying to classify, unsupervised

learning is the best approach. It is not possible to categorize the data correctly, and

incorrect categorization would only be detrimental to the classi�cation. If it is possible

to categorize the data, it becomes possible to perform supervised learning on the data.
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With correct categorization for the training data, future data can be classi�ed on the

constructed model from the training phase.

In either case, both learning algorithms require data to be classi�ed. Each element

within the data set consists of a feature set of size n. The power of machine learning

comes from its ability to handle multiple dimensions of features for multiple dimensions

of classi�cation categories. For unsupervised learning, each element within the data

set does not require a classi�cation category, however for supervised learning this

pre-determined category is required (at least initially to build the model).

Many areas of research have bene�ted from machine learning, such as data min-

ing [WFH11], computer vision [Her03], biology [OLP08], business [Her00], and health

sciences [Kon01]. Furthermore, most companies that o�er a complex recommendation

system utilize machine learning techniques. For example, in 2006 Net�ix challenged

the computer science, data mining, and machine learning communities to develop a

system that exceeded its own recommendation system [BL07]. Several tools exist that

provide sophisticated machine learning techniques to the general community in an

o�-the-shelf toolkit format such as WEKA [HFH+09] and SHOGUN [SRH+10].

2.2.1 Performance Measures

Machine learning techniques can be extremely bene�cial in solving classi�cation

problems. To properly measure the performance of the classi�cation, the actual

known classi�cation is required for each data instance. For unsupervised learning, the

performance measures can be acquired immediately after the data has been classi�ed,

as the correct classi�cations are present. In supervised learning, we �rst need to

generate a model that we can use to classify new data. To accommodate measuring

supervised learning, the available data is split up into training and testing sets. The

training set is used to construct the model which is then used to predict the testing
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True Positive (TP)
A correctly classi�ed as A

A

A

False Negative (FN)
A incorrectly classi�ed as B

B

False Positive (FP)
B incorrectly classi�ed as A

B

True Negative (TN)
remaining categories cor-

rectly classi�ed not as A

Actual
Value

Prediction Value

Figure 2.6: A 2 × 2 confusion matrix for classi�cation results of the A category.
It is possible to extend a confusion matrix to n × n dimensions. For each category the (TP, FN,

FP, and TN) variables need to be calculated.

set. The classi�cations of the predicted set can then be veri�ed against their correct

classi�cation to acquire performance measures of the supervised learning technique.

It is also possible to perform cross-validation, which is a technique that assess the

prediction accuracy using only the trained data. This evaluation is typically used

when only a small amount of data is available for training. E�ectively, this randomly

divides the training data into n equal-sized partitions. The machine learning technique

than trains on n − 1 partitions and predicts on the last. This process of training

and prediction is repeated n times using a di�erent partition for prediction each

time. Finally, all the individual prediction accuracies are tallied and averaged for a

cross-validation accuracy of n-folds. Commonly a 10-fold cross-validation is used to

evaluate predictive models [Koh95].

A confusion matrix can visually represent the allotment of predictions over the

actual categories, as seen in Figure 2.6. Using the variables of a confusion matrix, it is

possible to construct several performance measures that describe the e�ectiveness of
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the classi�er that created the confusion matrix. The following performance measures

are commonly used to describe the performance of a classi�er 1 [SJS06]:

� Precision represents the fraction of positive predictions that correctly belong

to the positive category.

precision =
TP

TP + FP
(2.2)

� Recall represents the fraction of positive instances that were correctly identi�ed.

recall =
TP

TP + FN
(2.3)

� Speci�city represents the fraction of negative predictions that were correctly

identi�ed.

speci�city =
TN

TN + FP
(2.4)

� Accuracy represents the fraction of all true predictions made that were correctly

identi�ed.

accuracy =
TP + TN

TP + FP + FN + TN
(2.5)

2.2.2 Support Vector Machine

A Support Vector Machine (SVM) is an example of a linear discrimination machine

learning technique and assumes that �. . . instances of a class are linearly separable

from instances of other classes� [Alp04]. Traditionally, SVMs have been used for

two-group classi�cation problems [CV95], but have also been generalized to n-group

classi�cation problems. For example, a SVM could be used to distinguish source code

1All of these measures can all be applied to each category. For demonstrative purposes we focus
on the positive category.
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(a) SVM separated with a small margin
between support vectors.

(b) SVM separated with a maximum
margin between support vectors.

Figure 2.7: Di�erence between small and maximum margins between support vectors.
As we can see in the two above examples, there are two categories in the feature space with a solid
line separating them, this is called the `hyperplane'. The dotted lines represent the distance to the
closest vector from the hyperplane, the distance between both dotted lines is also called the `margin'.
`Support vectors' are the vectors that are touching the margin. The goal of a SVM is to maximize the

distance between support vectors of opposite categories using the hyperplane. There is a clear
di�erence in the distance separating support vectors in the above examples, with the maximum

margin (b) being a better solution then the small margin (a).

written by two developer. To perform this classi�cation a set of attributes are required

to construct the SVM feature space. A feature space consists of a set of vectors (i.e.,

a row of data in the data set), with each vector containing a set of attributes2 (i.e.,

the values that de�ne the vector). Many attributes can be used to aid the SVM in

distinguishing between the di�erent categories. Using our example, we might consider

the lines of code, comment ratio, test coverage amongst other software metrics as

attributes. In our example the category for each vector then represents the developer

for the source code. With vectors consisting of attributes and category information

the SVM should be able to distinguish the source code of the two developers based on

the attributes of the source code.

2With respect to our approach, the use of attributes, metrics and features are interchangeable.
Using our example these attributes refer to the value of a metric that is measured from the software

system.
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(a) A SVM that has a non-linear sepa-
ration between two categories.

Kernel Function−−−−−−−−−→
(b) A SVM that is now linearly sepa-
rable due to using a kernel function.

Figure 2.8: Linearly separating non-linear using a kernel function.
As we can see in the two above example, a non-linear hyperplane is required in (a) to properly

separate the two categories. SVMs attempt to linearly separate the feature space. In this case it is
possible to map the vectors to a higher dimension using a kernel function. In the above example a
kernel function is used to map (a) to (b), resulting in a higher dimension such that each vector now
has a radius value (distance from the center to the edge). As we can see in (b) it is now linearly

separable when the feature space is mapped to a higher dimension (from two-dimensions to
three-dimensions).

To further illustrate how a SVM works we present an example (see Figure 2.7), in

which each vector has two attributes (x and y coordinates) and a category (blue or

red). A SVM attempts to �nd the maximum margin space between support vectors of

opposite categories, which results in the optimal hyperplane. The optimal hyperplane

is chosen over others, because �Intuitively, we would expect this boundary to generalize

well as opposed to the other possible boundaries� [Gun98].

In some cases a linear separation is not possible in the feature space. An example of

this is presented in Figure 2.8. It is possible to map the vectors to a higher dimension,

so that the feature space now becomes linearly separable. The separating hyperplane

is always of n − 1 dimensions (e.g., two dimensional data is separated with a one

dimensional line). Several kernel functions exist, though the Radial Basis Function

(RBF) kernel is highly recommended by the authors of LIBSVM [HCL03]. Kernels
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have parameters that govern how they form their corresponding hyperplane. The

RBF kernel has a gamma parameter that governs the �exibility (i.e., curvature) of

the hyperplane. If the hyperplane is too �exible (i.e., follows the contour of the data

too strictly) then it runs the risk of being over�tted for the given data [BHW10].

Over�tting can lower the ability of a classi�er to generalize. SVMs address this by

maximizing the margin distance, which allows some �exibility in adding new vectors to

the feature space. SVMs also have a cost parameter, where if there is a low cost then

the SVM will allow some mis-classi�cations (within a distance from the hyperplane

using a function of cost) [BHW10]. A higher cost value will reduce the number of

mis-classi�cations, but may create a model that does not generalize outside of the

training data.

Considering the following criteria for SVMs, we can distinguish between several

di�erent implementations from a user perspective:

� Citation: The citation for the tool's publication/website.

� Inception Year: The year the tool was released to the public.

� Multiple-Group: Whether or not the tool supports multiple group classi�ca-

tion problems, in addition to binary group classi�cation.

� Cross-Validation: Whether or not the tool supports cross-validation.

� Measures: Whether or not the tools supports performance measures to aid in

evaluation of classi�cation accuracy.

� Command-Line: Whether or not the tool supports to be ran via a CLI.

� Open Source: Whether or not the tool's source code is open source and freely

available to modify.
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SVMlight LS-SVMlab LIBSVM

Citation [Joa99] [SV99,PSVG+02] [CL11]
Inception Year 1999 1999 2000
Multiple-Group Noa Yes Yes
Cross-Validation Yese Yes Yes
Measures Nob Yes Noc

Command-Line Yes Nod Yesf

Open Source Yes Yes Yes
Academic Tool Yes Yes Yes
a There is an alternative tool of the same family that allows this (SVMmulticlass).
b There is an alternative tool of the same family that allows this only on binary
classi�cation (SVMperf ).

c There is an external extension which allows this only for binary classi�cation.
d Is a MATLAB toolkit, though it is possible to run a MATLAB script via a CLI.
e Performs a Leave-One-Out cross-validation, which is a n-fold cross-validating
given a n vectors in the feature set.

Table 2.4: Basic comparison of di�erent SVM implementations from a user perspective.

� Academic Tool: Whether or not the tool was developed from an academic

research group, otherwise industry or community developed.

Using this criteria, we provide a comparison of a di�erent SVM implementations in

Table 2.4. We can see various aspects of di�erent SVM implementations, for example

all three of these SVMs are open source academic tools that support cross-validation.

SVMlight does not support multiple-group classi�cation, though it has an alternative

tool that does allow this. LS-SVMlab has build in performance measurements, though

the tool works as a MATLAB toolkit.

2.3 Software Metrics

Metrics are measurements of a system, which can provide insight in describing/under-

standing the system. Goodman de�nes software metrics as �The continuous application

of measurement-based techniques to the software development process and its products
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to supply meaningful and timely management information, together with the use of

those techniques to improve that process and its products� [Goo93]. Measurements can

be further de�ned using the following de�nitions [Fen94]:

� Entity: Represents an object or event.

� Attribute: Represents a feature or property of an entity.

� Model: Represents a speci�c viewpoint of an attribute.

With respect to software metrics, we can consider a multitude of entities such as

the source code, the test cases, the bug reports, and more. There are many possible

attributes that can be used for any entity, it just has to be a repeatable and measurable

property. A measurable attribute is not su�cient as there might be di�erent views on

how to interpret the attribute. For example, using a software system's source code

as the entity and the size in lines of code being the attribute, how do we view or

represent size in this case? Should we include blank lines and/or comments? Are

we considering logical lines, physical lines? A model is used to specify the speci�c

viewpoint of the attribute, therefore with respect to the previous question we might

view size with respect to physical lines that exclude blank lines and comments.

As mentioned there are a number of software metric entities available. With respect

to source code as an entity (see Section 2.3.1), there are a number of attributes that

can represent structural characteristics of the source code. With respect to test suite

as an entity (see Section 2.3.2), there are attributes related to test coverage, as well

source code attributes as a test suite is often just source code that exercise the software

system. More software metrics entities exist (e.g., software development life-cycle, bug

report(s), program execution [SS08]) that we do not explain in this chapter as it is

not required for background knowledge.
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2.3.1 Source Code Metrics

In general, software metrics can be used to measure a number of qualities of a

software system. In particular, source code metrics give insight into structural

aspects of the software system including its complexity, size, and object-oriented

attributes [McC76,Kan02,HWY09,HS96,SRD12]. Chidamber and Kemerer presented

a suite of object-oriented metrics [CK94], around the same time Abreu and Carapuça

also presented the MOOD object-oriented suite [AC94]. Source code metrics are

typically extracted from the source code using static analysis techniques. Some

metrics like defect density make use of external bug reports in combination with the

source code to indicate problematic modules [FP98].

For the scope of this thesis, we only consider the Java programming language, which

has object-oriented features. This means that source code metrics can be acquired

at di�erent scope-levels (i.e., method, class, package, project). For example, we can

calculate the cyclomatic complexity [McC76] of a method by simply counting the

number of decision points (i.e., di�erent decisions of control statements). We can also

calculate the nested block depth of a method, which is determined by the number of

nested blocks (i.e., control statements). From a class-level perspective we can measure

the number of methods and attributes the class contains. We can also measure the

depth of the class in respect to its inheritance tree. At a higher level we start to

consider the number of classes within a package, along with measuring coupling inside

and outside of the package. These metrics can be used to alert developers to a speci�c

class or method might be problematic. If these metrics reach extreme points (i.e.,

complex method, large class, high coupling) they can become code smells (i.e., source

code that is hard to read and maintain) and should be refactored [FB99].
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2.3.2 Test Suite Metrics

The source code of a software system is one of the most important software artifacts.

From a testing perspective the test suite is very important as it ensures the correctness

of the System Under Test (SUT). Using the test suite as an entity for software metrics

provides a number of observable attributes. As test cases at a unit testing level are

just source code units, it is possible to borrow similar attributes from the source

code metrics entity (see Section 2.3.1). As mentioned in Section 1.1, coverage can

also assess what parts of the source code are exercised by the test suite [ZHM97].

Coverage metrics is one of the more common test suite metrics, as it measures the

relationship between the test suite and source code. We can also extract speci�c test

suite attributes such as the number of test cases, and also attributes from the source

code entity such as the complexity of test cases.

2.4 Summary

In this chapter we covered the following background topics for the research presented

in this thesis:

� In Section 2.1 we covered what mutation testing is and how it relates to test

suite e�ectiveness with respect to fault detection adequacy. We explored various

sets of mutation operators with examples for method- and class-level mutation.

A set of Java speci�c mutation tools was also discussed for comparison.

� In Section 2.2 we covered what machine learning is and the di�erences between

supervised and unsupervised classi�cation. We speci�cally covered common

performance measures and how SVMs work.
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� In Section 2.3 we covered software metrics � speci�cally source code and test

suite metrics. We explain how source code metrics can be used to identify code

smells and some examples of these metrics. We also explain several approaches

to test suite metrics using a combination of source code metrics on test cases as

well as coverage metrics.
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Chapter 3

Approach

This chapter describes our approach to predicting the mutation score of a source code

unit under test based on source code and test suite metrics data. Our approach at a

high-level can be summarized in the following steps:

1. Collect mutation score data of the SUT.

2. Collect source code metric data of the SUT.

3. Collect test suite metrics data of the SUT.

4. Synthesize collected data together and store it within a database.

5. Construct classi�cation model.

6. Predict with classi�cation model.

In Section 3.1 we describe each step of our process in detail, according to the

overview presented in Figure 3.1. Then, in Section 3.2 we describe how we use the

produced classi�cation model of our approach to predict the mutation scores of source

code units. We mention related works to our research in Section 3.3.
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Figure 3.1: Our training process for predicting mutation scores of source code units.
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3.1 Process

Our process for mutation score prediction using source code and test suite metrics

is shown in Figure 3.1. The complete set of source code and test suite metrics used

in our process are shown in Table 3.1. We grouped our metrics into logical feature

sets (see Table 3.2) so we could manipulate the groupings later in Chapter 4. This is

grouping used to allow to understand the bene�ts of each feature set with respect to

prediction performance. Further mention of the feature sets will be referred to by their

corresponding set (from Table 3.2 � ¬, , ®, ¯), and metrics by their abbreviation

(from Table 3.1 � NBD, NOF, LCOM, etc. . . ). Supervised machine learning techniques

require a model �rst before any predictions are made (as mentioned in Section 2.2). To

achieve this, our process �rst relies on the notion of acquiring known data to construct

the appropriate SVM model for future prediction. As mentioned in the motivation

(see Section 1.1), our approach aims to reduce the amount of mutation testing done

in iterative development. If our technique generalizes well, then it can be possible to

build a comprehensive model and predict on di�erent software systems without any

prior mutation testing. This will be explored in Chapter 4.

As our approach attempts to predict the mutation score of source code units, we

need to keep in mind the factors involved: the source code unit and any unit test cases

that provide coverage. Our intuition suggests that we need to look at both source

code and test suite metrics to properly measure these two source code artifacts. We

reason that since both source code and test suite are tightly coupled for a software

system, observing them together would be the best approach for understanding and

predicting mutation scores. We hope that by considering the associated unit test cases

for a source code unit we can capture a bit on their interactions and relationships in

terms of test suite e�ectiveness.
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Metrics Description Scope
AMLOC Average MLOC of methods Class
ANBD Average NBD of methods Class
APAR Average PAR of methods Class
ATMLOC Average MLOC of test methods Class/Method
ATNBD Average NBD of test methods Class/Method
ATPAR Average PAR of test methods Class/Method
ATVG Average VG of test methods Class/Method
AVG Average VG of methods Class
BCOV Basic blocks covered in code unit Class/Method
BTOT Total basic blocks for code unit Class/Method
DIT Depth of inheritance tree Class
LCOM Lack of cohesion of methods Class
MLOC Method lines of code Method
NBD Nested block depth Method
NOF Number of attributes Class
NOM Number of methods Class
NORM Number of overridden methods Class
NOT Number of test cases Class/Method
NSC Number of children Class
NSF Number of static attributes Class
NSM Number of static methods Class
PAR Number of parameters Method
SIX Specialization index Class
SMLOC Sum MLOC of methods Class
SNBD Sum NBD of methods Class
SPAR Sum PAR of methods Class
STMLOC Sum MLOC of test methods Class/Method
STNBD Sum NBD of test methods Class/Method
STPAR Sum PAR of test methods Class/Method
STVG Sum VG of test methods Class/Method
SVG Sum VG of methods Class
VG McCabe cyclomatic complexity Method
WMC Weighted method per class Class

Table 3.1: The complete set of metrics used as attributes for each vector of the SVM.
The above metrics (listed in alphabetical order) specify the source code unit scope the metric belongs.

We acquire the source code unit metrics described in Table 3.1 using Eclipse

Metrics Plugin (further described in Section 3.1.3) and EMMA (further described in
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Feature Set Metrics
¬ � Source Code DIT, LCOM, MLOC, NBD, NOF, NOM, NORM,

NSC, NSF, NSM, PAR, SIX, VG, WMC
 � Coverage BCOV, BTOT, NOT
® � Accumulated
Source Code

AMLOC, ANBD, APAR, AVG, SMLOC, SNBD,
SPAR, SVG

¯ � Accumulated
Test Case

ATMLOC, ATNBD, ATPAR, ATVG, STMLOC,
STNBD, STPAR, STVG

Table 3.2: Feature sets based on a logical grouping (i.e., similar metrics and the means
they were acquired) of metrics from Table 3.1.

Section 3.1.4). We aggregate method-level metrics into class-level metrics to follow

the scope hierarchy. We also compute the mutation scores using Javalanche (further

described in Section 3.1.2) and combine those with the source code unit metrics to

create our required input for training and prediction.

In Appendix B we investigated the correlation between the mutation score (i.e.,

what we are predicting) and the individual metrics (i.e., attributes we are using to

make the predictions). We found that there approximately six metrics that provided

moderate correlation with the mutation score, while the remaining metrics provided

only weak or no-correlation.

There is no single metric that provides a strong correlation with the muta-

tion score, which suggests this is a di�cult prediction to make.

The following sections walk through the complete process one phase at a time,

providing examples where possible. The entire process is executed using our custom

scripts that automate data collection, synthesis, and evaluation1.

1Scripts and documentation: https://github.com/sqrlab/mutation_score_predictor.
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3.1.1 Inputs

To predict the mutation score of class- and method-level source code units, our

approach requires: a set of source units of code (the Java �les that compose the SUT)

and the corresponding set of unit test cases (the JUnit �les that compose the test

suite for the SUT). A simple example of the required input is presented in Figure 3.2.

Our approach is only concerned with source units of code that are being tested, thus

the more coverage the test suite provides the more data that can be extracted from

the SUT.

3.1.2 Collect Mutation Scores

We use SVM, a supervised learning technique, to predict mutation scores. Before

any predictions can occur we must �rst collect data to compose a feature set with

vectors of attributes (i.e., metrics). The collected data must also have their correct

categories (i.e., mutation score) assigned to them as we will use the collected data

for training purposes. Afterwards, when training is completed, it becomes possible to

make predictions on new data based on the model that has been trained.

In our research we use Javalanche (version 0.4), a mutation testing tool for

Java [SZ09a] that applies a subset of the method-level mutation operators (see Ta-

ble 3.3). These selected operators provide a close approximation of the e�ectiveness

of using the entire set of method-level operators at a reduced cost [OLR+96].

We chose Javalanche for our research because it is customizable and extendable,

therefore allowing us to modify Javalanche to calculate unit mutation scores and

output a richer set of results. Other bene�ts of Javalanche include full integration with

JUnit, the use of mutation schemas and bytecode generation to improve performance,

and test selection using coverage (see Table 2.3 for full list). Although Javalanche does
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Triangle Source Code

public class Triangle {

public Boolean isValid(int a, int b, int c) {

if (a <= 0 || b <= 0 || c <= 0)

return false;

else if (a + b < c || a + c < b || b + c < a)

return false;

return true;

}

public TType classify(int a, int b, int c) {

if (!isValid(a, b, c))

return INVALID;

int trian = 0;

if (a == b)

trian = trian + 1;

if (a == c)

trian = trian + 2;

if (b == c)

trian = trian + 3;

if (trian > 3)

return EQUILATERAL;

else if (trian == 0)

return SCALENE;

else if (trian == 1 && a + b > c)

return ISOSCELES;

else if (trian == 2 && a + c > b)

return ISOSCELES;

else if (trian == 3 && b + c > a)

return ISOSCELES;

return INVALID;

}

}

TriangleTest Test Suite

public class TriangleTest {

public void testScalene() {

TType type = Triangle.classify(1, 2, 3);

assertEquals(SCALENE, type);

}

public void testIsoceles() {

TType type = Triangle.classify(2, 2, 3);

assertEquals(ISOSCELES, type);

}

public void testEquiliteral() {

TType type = Triangle.classify(1, 1, 1);

assertEquals(EQUILATERAL, type);

}

public void testNegative() {

Boolean isValid = Triangle.isValid(1, -1, 1);

assertEquals(true, isValid);

}

public void testInvalid() {

Boolean isValid = Triangle.isValid(6, 1, 2);

assertEquals(true, isValid);

}

public void testValid() {

Boolean isValid = Triangle.isValid(2, 3, 4);

assertEquals(false, isValid);

}

}

Figure 3.2: Example source code of Triangle and its test suite TriangleTest.
The above example presents a stripped down example of expected input that our prediction approach

requires. This software system is able to classify triangles, and has a few test cases to test its
capabilities in classifying triangles.

not have class-level mutation operators, due to the open source nature of Javalanche

we can extend it to incorporate class-level mutation operators. In addition, Javalanche

already has concurrency-level mutation operators as well as the ability to identify

equivalent mutants using impact analysis.

Using scripts we made our whole approach as automated as possible, thus the user

only has to con�gure a couple variables to target a di�erent software system (i.e.,

package pre�x, test suite name, source directories). We have made minor modi�cations
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Name Description
REPLACE_CONSTANT Replace a constant
NEGATE_JUMP Negate jump condition
ARITHMETIC_REPLACE Replace arithmetic operator
REMOVE_CALL Remove method call
REPLACE_VARIABLE Replace variable reference
ABSOLUTE_VALUE Insert absolute value of a variable
UNARY_OPERATOR Insert unary operator

Table 3.3: The set of selective method-level mutation operators used in Javalanche.

CLASS_NAME,KILLED_MUTANTS,COVERED_MUTANTS,MUTATION_SCORE_OF_COVERED_MUTANTS ...

triangle.Triangle,145,201,0.7213930348258707 ...

CLASS_NAME,METHOD_NAME,KILLED_MUTANTS,COVERED_MUTANTS,MUTATION_SCORE_OF_COVERED_MUTANTS ...

triangle.Triangle,triangle.Triangle.classify(III)Ltriangle/TriangleType;,84,121,0.6942148760330579 ...

triangle.Triangle,triangle.Triangle.isValid(III)Ljava/lang/Boolean;,61,80,0.7625 ...

Figure 3.3: Example CSV �les of the mutation scores from the Triangle software
system.
The above �le snippets show the generated class (top) and method (bottom) mutation score CSV �les.
There are more values related to the number of mutant types generated/killed that are not shown for

terseness.

to Javalanche that allows it to use all the speci�ed operators from Table 3.3. Javalanche

is also con�gured to use its coverage impact analysis to give insight on equivalent

mutants (more on this in Chapter 4), though this slows down Javalanche substantially.

Furthermore we added a custom analyzer that outputs the mutation scores of each

class and method units in the SUT.

Javalanche generates all possible mutants, then considers the set of mutants

covered by the provided test suite. Given the set of covered mutants, Javalanche then

tests and records the results of each mutant using its subset of covered test cases

for that speci�c mutant. The newly added analyzer for Javalanche then outputs an

intermediate CSV �le of mutation scores for the covered source code units. Using

the example Triangle software system presented in Section 3.1.1, the CSV �le of the
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acquired mutation scores are shown in Figure 3.3. Using the CSV �le, we populate a

database with all the acquired data, easing the management and analysis of the data.

3.1.3 Collect Source Code Metrics

In our research, we use the Eclipse Metrics Plugin (version 1.3.8.20100730-001) to

acquire source code metrics of the method- and class-level source code unit under

test [Met]. We selected this tool as it provides a comprehensive set of metrics for Java

programs (see feature sets ¬ and ® from Table 3.2). The metrics can also be exported

to XML which is a suitable format from which to extract data. Although this tool is

part of Eclipse as a plugin, it is possible to initiate the tool through a CLI interface

after importing the SUT into Eclipse. When used the Eclipse Metrics Plugin produces

an XML �le of the source code metrics of the source code units and unit test cases.

The produced XML �le is metric-oriented, so we translate this into a unit-oriented

format. This phase acquires source code metrics for each source code unit (see feature

set ¬ in Figure 3.2). As we focus on JUnit test cases as our testing framework, we

can actually use the Eclipse Metrics Plugin to gather the source code metrics of the

test suite (see feature set ¯ from Table 3.2). Using the example in Figure 3.2 this

phase extracts the metrics displayed in Table 3.4 and 3.5.

3.1.4 Collect Test Suite Coverage Metrics

EMMA (version 2.0.5312) is capable of determining the basic block coverage of a test

suite [Rou], which is our test suite coverage metrics (see feature set  in Table 3.2).

Using the test suite and the SUT, it is possible to acquire the coverage for each source

code unit using the set of covering unit test cases2. We run the set of covered unit

2Currently we acquire the covered test cases using Javalanche, though this can easily be computed
solely using EMMA with additional analysis.
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test cases for each source code unit with EMMA, producing XML �les containing the

block coverage of the covered unit test cases on the SUT. We then can extract the

coverage of the targeted source code unit. Using the example in Figure 3.2 this phase

extracts the following metrics as seen in Table 3.6.

3.1.5 Combine Coverage and Source Metrics

At this point in the process we have acquired all the raw data (mutation scores, source

code metrics, and test suite metrics). We can now begin synthesizing data together,

combining source code metrics and coverage metrics together. We �rst analyze all

the coverage XML �les produced from the coverage phase (see Section 3.1.4). We

calculate the coverage that each source code unit has given the set of covered unit test

cases used. Now we combine the source code metrics and coverage metrics of a source

code unit. The combined data is added to our database to go along with the acquired

mutation score. Each source code unit in the database eventually will contain all the

metrics pertaining to it, along with its mutation score.

3.1.6 Aggregate and Merge Method-Level Metrics

The last phase for data synthesis is to merge the source code metrics of the covered unit

test cases together into their corresponding source code unit. This merger produces

feature set ¯ from Table 3.2. Using our example, this phase produces the synthesized

test suite metrics shown in Table 3.7.

We also aggregate the method-level source code units metrics into their respected

parent class-level source code unit. This allows us to populate the database with

metrics from feature set ® from Table 3.2. Using our example, the aggregation of

method-level metrics to class-level source code units is shown in Table 3.8.
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1 1:2 2:1 3:1 4:1 5:0 6:0 7:0.0 8:0.0 9:0.0 10:0.0 11:2 12:2

1 1:2 2:1 3:1 4:1 5:0 6:1 7:3.0 8:1.0 9:1.0 10:0.0 11:2 12:2

2 1:24 2:3 3:1 4:1 5:1 6:1 7:16.0 8:1.0 9:1.0 10:0.0 11:19 12:19

2 1:31 2:6 3:3 4:3 5:1 6:1 7:17.0 8:1.0 9:1.0 10:0.0 11:8 12:18

3 1:1 2:1 3:1 4:1 5:1 6:2 7:16.0 8:1.0 9:1.0 10:0.0 11:3 12:3

3 1:23 2:7 3:2 4:2 5:0 6:0 7:0.0 8:0.0 9:0.0 10:0.0 11:23 12:25

...

Figure 3.4: Example �le format for LIBSVM, a .libsvm �le of vectors
For a SVM, each row is a vector where the �rst number in each row is the category and each

<a>:<b> represent an attribute. From the above example, there are three categories and 12 attributes.
For each attribute a represents the attribute ID and b represents the actual value for that attribute.
The attribute ID maps to a speci�c metric that the vector is representing. For example, attribute 1

might map to the MLOC metric, and so-forth.

3.1.7 Create LIBSVM File

At this point in the process our database contains all the necessary information for

the SVM. We have collected and synthesized all the source code and test suite metrics

for both class- and method-level source code units. We use LIBSVM (version 3.12), a

SVM library capable of solving n-group classi�cation problems [CL11]. We decided to

use this library implementation as it is mature and used in many other publications3.

LIBSVM has the ability to run entirely from a CLI, and provides an easy to use

interface to perform training and prediction. We can now output the speci�c �le format

(.libsvm) of the acquired data. This format is required for our SVM tool, LIBSVM,

and contains a list of vectors with each having a category and set of attributes, as

seen in Figure 3.4. Our process produces two .libsvm �les, one for the method-level

source code units and another for the class-level source code units.

Instead of predicting a speci�c mutation score percentage, we categorize all muta-

tion scores as LOW, MEDIUM, HIGH, which reduces the mutation score prediction

to a three-group classi�cation problem. The ranges of values in each category are

determined based on the distribution of the mutation scores in our training data

(further explained in Section 4.3.1). Finally, the .libsvm �le is passed into LIBSVM

3LIBSVM [CL11] has been cited 9323 times according to Google Scholar as of May 21st, 2012.
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to complete the training process. Mutation scores have a range from 0% and 100%,

however a SVM cannot perform classi�cation over such a range of real numbers. To

circumvent this problem we instead group ranges of mutation scores into groups (i.e.,

LOW: 0%�33%, MEDIUM: 34%�66%, and HIGH: 67%�100%). As the mutation scores

most likely will not follow a balanced distribution we may have to adjust the group

ranges to accommodate the distribution. In Section 4.3.1 we examine, the mutation

score distribution and consider usable ranges of mutation scores for our categories.

3.2 Prediction

Once we have train the SVM, we can use it for prediction. We can predict the mutation

score category of an unknown source code unit by �rst determining the source code

and test suite metrics. The metrics (i.e., attributes) are passed into the SVM model

which will then assign a category of LOW, MEDIUM, HIGH for the mutation score.

As shown in Figure 3.5 our prediction process is not too di�erent from the training

process, and we now can exclude Javalanche from the process 4.

3.3 Related Work

Although prediction of mutation scores has not been previously researched, the related

topic of using software metrics to locate faults in source code has been well researched.

For example, Koru and Liu utilized static software measure along with defect data at

the class level to predict bugs using machine learning [KL05]. Similarly, Gyimothy et al.

used object-oriented metrics with logistic regression and machine learning techniques

to identify faulty classes in open source software [GFS05]. Design level metrics were

4We currently calculate the NOT (i.e., number of tests) metric using Javalanche, though ideally
we can calculate this using EMMA. This is a setback in our current implementation.
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Figure 3.5: Our prediction process for predicting mutation scores of source code units
given a trained SVM.

used with a linear prediction model to determine the estimated maintainability and

error prone modules of large software systems [MKPS00]. Nagappan et al. used

post-release defects of multiple versions along with source code complexity metrics

to predict component failures [NBZ06]. Our work is unique in comparison to these

previous works since we not only use source code metrics but we also use test suite

metrics to enhance our predication capabilities. The aforementioned works on fault

prediction do not use test suite metrics for their predictions, however they do, in some

cases, utilize bug reports.
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Wong et al. used statement coverage of test cases to localize faults using di�erent

heuristics [WDC10]. The aforementioned studies primarily utilized source code metrics,

however this study used only test suite metrics for fault localization. On a more

related study, Anderson et al. used a neural network to prune a test suite, which

preserved test suite e�ectiveness for domain based testing [AMM95]. Their approach

used attributes of test cases as input and an oracle that determined the severity of

faults present in test cases. The study Anderson et al. conducted did not examined

the SUT's source code metrics, and only focused on the test suite. They used test

suite metrics such as the length of the test case and command/parameter frequency.

Nagappan et al. created the Software Testing and Reliability Early Warning

(STREW) metric suite, a test quality indicator [NWO+05,NWVO05]. Both source

source code and test suite metrics were used in their calculation of test quality, which

was the closest use of metrics to our own set.

Inozemtseva researched the relationship between test suite size, basic block coverage

and test suite e�ectiveness [Ino12]. This study used EMMA to measure basic block

coverage and Javalanche to measure test suite e�ectiveness, which is very similar to

our approach. The research question between their study and ours is quite di�erent.

We are trying to predict the mutation score (i.e., the test suite e�ectiveness) of

individual source code units. Inozemtseva's study attempted to understand whether

basic block coverage and test suite size are e�ective in predicting test suite e�ectiveness.

Inozemtseva determined that basic block coverage is a poor predictor of test suite

e�ectiveness.

45



3.4 Summary

In this chapter we covered all aspects of our approach in terms of tools and the process

used to collect and train our SVM. As we use a SVM as our prediction technique

we require training data, thus we collected the mutation scores of each source code

unit. We also collected the various metrics from the source code and test suite and

synthesized all the acquire data to train our SVM to make prediction on existing

and new data. We described each step of our process in Section 3.1, and how we

perform prediction in Section 3.2. Finally in Section 3.3 we addressed related work

to our approach on prediction of mutation scores using machine learning prediction

techniques.
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Chapter 4

Empirical Evaluation

In this chapter, we evaluate our approach detailed in Chapter 3. We describe how

we setup and conduct our empirical evaluation in Section 4.1 and we describe our

experimental method in Section 4.2. Finally we discuss our experimental results in

Section 4.3 and threats to validity in Section 4.4.

4.1 Experimental Setup

To encourage reproducibility of our empirical evaluation we discuss the speci�c details

concerning environment (Section 4.1.4), tool con�guration (Section 4.1.1), test subjects

(Section 4.1.2), and data preprocessing (Section 4.1.3).

4.1.1 Tool Con�guration

We use three tools in our approach � Javalanche, Eclipse Metrics Plugin and EMMA.

For all three tools, our approach manipulates the raw output of these tools to better

support data synthesis. We use the default con�guration for Eclipse Metrics Plugin

and EMMA, as these are already con�gured to provide the necessary data.
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We con�gured Javalanche to better suite our approach. Although Javalanche has

the ability to run parallel tasks, we did not utilize this feature. This was to avoid

unnecessary issues that can occur due to concurrent access to �le resources that a test

suite may use. We enabled the coverage impact analysis of Javalanche as it provides

comprehensive data regarding the mutants such as the type, location, and whether or

not it was killed. The additional analysis is useful and required in the implementation

of our approach, though it reduces the performance of Javalanche.

We perform 10-fold cross-validation as described in Section 2.2. We used the

default values for most LIBSVM parameters including using the default kernel function

(the RBF kernel as it comes recommended by the authors [HCL03]). Although we

use the default kernel function (RBF) we do vary the parameters gamma and cost.

LIBSVM assists in the selection of the kernel function parameters by providing a

script that automatically scales the data and selects the kernel parameters using a grid

search [HCL03]. A grid search iterates over a range of parameters (i.e., gamma and

cost for the RBF kernel) while measuring the e�ect it has on the classi�ers performance.

Parameter selection is a critical aspect of machine learning algorithms, and it can

greatly in�uence the classi�cation accuracy. We allow LIBSVM to automatically take

care of this to best select the kernel parameters based on the provided data. We allow

LIBSVM to use eight threads for computation tasks.

4.1.2 Test Subjects

We constructed three simple criteria to select our test subjects:

� We selected software systems that have a minimum of 5000 total SLOC. We

decided to use this size as our minimum to avoid selecting toy software systems
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that are not similar to real software systems. Also, by using real software systems

we can potentially collect more data than that of toy software systems.

� We selected open source projects as they are relatively easy to acquire as opposed

to industry projects, and are freely available to analyze.

� Our approach required projects with a test suite or set of test cases as it is

fundamentally required for mutation testing.

Following the criteria outlined, we selected the following eight open source Java

software systems shown in Table 4.1. A brief description of each open source software

system used in our empirical evaluation is presented as follows:

� logback-core: �Logback is intended as a successor to the popular log4j project,

picking up where log4j leaves o�. The logback-core module lays the groundwork

for the other two modules� [log].

� barbecue : �Barbecue is an open source, Java library that provides the means to

create barcodes for printing and display in Java applications� [bar].

� jgap: �JGAP is a Genetic Algorithms and Genetic Programming component

provided as a Java framework� [jga].

� commons-lang : �The standard Java libraries fail to provide enough methods

for manipulation of its core classes. Apache Commons Lang provides these extra

methods� [com].

� joda-time: �Joda-Time provides a quality replacement for the Java date and

time classes. The design allows for multiple calendar systems, while still providing

a simple API� [jodb].
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� openfast : �OpenFAST is a 100% Java implementation of the FAST Protocol

(FIX Adapted for STreaming). The FAST protocol is used to optimize communi-

cations in the electronic exchange of �nancial data� [ope].

� jsoup: �jsoup is a Java library for working with real-world HTML. It provides

a very convenient API for extracting and manipulating data, using the best of

DOM, CSS, and jquery-like methods� [jso].

� joda-primitives: �Joda Primitives provides collections and utilities to bridge

the gap between objects and primitive types in Java� [joda].

For our experiments we have eight test subjects that we can use individually, as

well as consider them collectively. Therefore, we further refer to the collective set of

all the individual test subjects as the all subject. By combining the individual test

subjects we can evaluate our approach on a mixed set of data. Though each test

subject is unique in terms of the functionality they provide and the speci�c structural

design choices, each one shares the commonality of being a software system. To further

explore how our approach performs on di�erent data, we consider eight additional

sets using the all subject as the base, excluding an individual test subject. In other

words, we have eight all_but_<subject> subjects, which is a combination of each

individual test subject except the <subject>. These additional subjects allow us to

evaluate our prediction approach by keeping one test subject completely isolated from

the rest. As our approach focuses on prediction of mutation scores using metrics of

the test subjects, the all and all_but_<subject> subjects allow us to evaluate the

generalizability of our approach on mixed and isolated test subjects.
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4.1.3 Data Preprocessing

We �rst run each test subject through a veri�cation test that Javalanche provides.

This test identi�es any unit test cases that cannot execute properly or fail within

Javalanche. We have to remove these test cases as the mutation testing process

requires a test suite with no errors. We then import all the test subjects into Eclipse,

as that is where the Eclipse Metrics Plugin operates. With our approach, we simply

con�gure our scripts to identify the test subject to collect data from, and the results

are then stored in a database.

4.1.4 Environment

We conducted all of the experiments for our empirical evaluation on a single machine

that has six GB of random access memory, a hard drive disk running at 7200 revolutions

per minute and an Intel Core i7-870 processor running at 2.93 gigahertz. The

environment is relevant as the mutation testing performance cost is dependant on the

processor and hard drive disk speed.

4.2 Experimental Method

Our empirical evaluation consists of �ve separate experiments:

� Mutation Score Distribution (Section 4.3.1): Using our test subjects

described in Section 4.1.2, we �rst want to understand their mutation testing

results. Using our approach, we collect the source code, test suite metrics, and

mutation scores of each test subject. As each test subject consists of multiple

class- and method-level source code units, we are interested in the distribution of

mutation scores. By understanding the distribution, we can gauge the available
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data that we will have for the later experiments and detect possible anomalies.

We can also identify classi�cation categories for the future experiments based

on the mutation distribution as SVM have di�culty predicting real values (i.e.,

the mutation score).

� Cross-Validation (Section 4.3.2): We identi�ed features that describe source

code units in Table 3.1. We grouped the features into sets (see Table 3.2) so we

could evaluate how each set in�uences our classi�cation performance. In this

section we acquire the cross-validation accuracy for using the di�erent feature

sets over all the available data to identify the best feature set. We then evaluate

the cross-validation accuracy over each individual test subject using the best set

of features.

� Prediction on Unknown Data (Section 4.3.3): Cross-validation accuracy

provides a good indicator of classi�cation performance, however it does not

simulate realistic prediction on unknown data. In this section, we control the

training and testing data for our SVM to evaluate the prediction accuracy on

unknown data. Using the all_but_<subject> subjects, we can evaluate the

prediction accuracy when dealing with a unknown test subject that is isolated

from the training data. We also evaluate the prediction accuracy of unknown

data within an individual test subject. Both of these predictions are on unknown

data but they explore the performance di�erences for prediction within a test

subject, and against a di�erent test subject.

� Optimization and Generalization (Section 4.3.4): It is not known prior

to predicting on unknown data what parameter values to use for the SVM.

In Section 4.3.3, the parameters are selected based on what maximizes the

cross-validation accuracy with hopes that these parameters generalizes to the
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unknown data. In this section, we identify the most appropriate parameters

that generalize to unknown data prediction. We evaluate the implications of

using the generalizable parameters with respect to their impact on predicting

unknown data.

� Impact of Training Data Availability on Prediction Accuracy (Sec-

tion 4.3.5): Using the �ndings from the previous experiments, we explore the

impact of data availability on prediction accuracy. We graph the prediction

accuracies against the amount of training data used for prediction. This experi-

ment evaluates the applicability of using our approach in iterative development

where it is bene�cial to avoid evaluating every mutant generated.

4.3 Experimental Results

The following �ve sections present experiments used in our empirical evaluation for

our approach. Each section starts with a general research question that is addressed

throughout the section.

4.3.1 Mutation Score Distribution

Research Question #1: What is the mutation score distribution of our

test subjects?

Research Question #2: Using the distribution of our test subjects'

mutation scores can we identify three categories of mutation scores to

predict?

As described in Chapter 3, our approach uses mutation testing to acquire the necessary

mutation score data used for the category of the source code units. Table 4.2 shows
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the results of running Javalanche on our test subjects. For all of our test subjects,

mutation testing produced a large number of mutants that were evaluated, taking

approximately 64 hours to complete in our experimental environment. As described in

Section 2.1.2, Javalanche utilizes coverage (i.e., basic block coverage) for test selection

which limits the number of mutants to be evaluated to a subset of covered mutants.

Javalanche was able to kill 79.8% of the covered mutants using all projects cumulatively.

All individual projects, except for barbecue, exceeded a mutation score of at least

73% which indicates that the test suites for covered source code units are reasonably

e�ective. The overall coverage is 70.1%, indicating that the test suites of the projects

did not cover the remaining 29.9% of the generated mutants. Realistically, mutation

scores are calculated using the entire project's source code, but for our purpose only

covered mutants were used. The corrective action for non-covered mutants (i.e.,

mutants not covered by test suite using basic block coverage) is to add new test cases

that provide coverage over the mutant's location.

Source code and test code metrics were collected as described in Chapter 3, which

represent the set of feature data that make up the vectors of our SVM. Our approach

can only make predictions using the synthesis of both mutation score data (i.e.,

category data) and source and test suite metrics (i.e., feature data) of source code

units. If any piece of data is missing, we cannot use that source code unit for training

and prediction purposes. Using our approach, we collected data for 864 class-level and

5510 method-level source code units (see Table 4.3). We ignored abstract, anonymous,

and overloaded source code units, because taking these into account would be a

complex task. In addition to the ignored source code units we also ignored units

with missing data (i.e., no tests cases), restricting the available data for further

experiments. We present the distribution of the all the collected data points1 for

1Data points are the vectors or rows of data within a SVM .libsvm �le.
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Figure 4.1: Mutation score distribution of classes from all eight test subjects from
Table 4.1 that can be used for training.
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Figure 4.2: Mutation score distribution of methods from all eight test subjects from
Table 4.1 that can be used for training.
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Figure 4.3: Covered mutant distribution of classes from all eight test subjects from
Table 4.1 that can be used for training.
The above �gure presents a subset of the full distribution by collapsing the values that exceed 200 into
a single data point. The max number of covered mutants found was 6507, which corresponds to the

following class org.joda.time.format.ISODateTimeFormat from the joda-time project.

both class-level and method-level source code units with respect to mutation score

in Figure 4.1 and 4.2. The mutation score distributions for each individual project

are found in Appendix A. The mutation distribution of both class- and method-level

source code units are both negatively skewed, con�rming our earlier observation that

the test suite for the collected source code units are reasonably strong at detecting

faults. We noticed that there were spikes comparative to their surroundings at the

0%, 50% and 100% mutation score values, in particular the 100% value is two to nine

times greater then other areas respectively. We speculate the spikes occur because a

large number of source code units probably have small number of covered mutants

(i.e., easier to kill all, evenly kill half or kill none). Analysis of the covered mutant

distribution for class-level source code units (as seen in Figure 4.4) shows a slightly
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Figure 4.4: Covered mutant distribution of methods from all eight test subjects from
Table 4.1 that can be used for training.
The above �gure presents a subset of the full distribution by collapsing the values that exceed 200 into
a single data point. There were 51 methods that had 117 covered mutants each, of these 48 are

similar and are contained within the ISODateTimeFormat class of joda-time. The max number of
covered mutants was 587, which corresponds to the

org.joda.time.format.PeriodFormatterBuilder$FieldFormatter.parseInto method.

denser grouping for low covered mutants. The positively skewed distribution of covered

mutants for method-level source code units supports our speculation. With respect

to the percentile of the class-level distribution of covered mutants, a quarter of the

classes have less then 16 covered mutants. The method-level results show that half of

the method have less then six covered mutants, and a quarter of the methods have

less then two covered mutants. The distributions of covered mutants con�rm our

speculation that many of the source code units have a low number of covered mutants,

which can contribute to the high 0%, 50% and 100% mutation scores.

In Section 3.1.7, we mentioned that our approached would create .libsvm �les using

the acquire data. The category data required for the �les that the SVM utilized based
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on the mutation score of source code units. To avoid predicting the exact mutation

score (i.e., a set of real numbers), we instead used an abstracted set of categories (i.e.,

ranges of mutation scores). We were unsure how to properly select the ranges to use

for our categories, but eventually decided to base our categories on the distribution of

mutation scores from Figure 4.3 and 4.4. We found that the class-level distribution has

a 25th, 50th and 75th percentile of 72%, 81%, 89% respectively, and for same percentiles

of the method-level distribution are 75%, 87%, 99%. Using these values we decided to

use the following as our general case of categories for all further experiments:

� LOW = [0% � 70%)

� MEDIUM = [70% � 90%)

� HIGH = [90% � 100%]

The rational behind the categories is to separate the lower and upper percentiles

in to the LOW and HIGH category, with the remaining into the MEDIUM category.

We believe that these values will provide a su�cient level of information over the

mutation testing coverage of the source code units.

4.3.2 Cross-Validation

Research Question: Using the test suite and source code data from our

test subjects can we identify a set of features that maximize cross-validation

accuracy?

Using the determined classi�cation categories from the previous section, we have

imbalanced training data for class- and method-level source code units as shown in

Table 4.4. Imbalanced data occurs when the data is not evenly distributed across

the classi�cation categories. This can be problematic for supervised machine learning
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Category Mutation
Score Range

Class-Level Method-Level

LOW [0% � 70%) 191 1104
MEDIUM [70% � 90%) 459 1782
HIGH [90% � 100%] 214 2624

Table 4.4: The available number of source code units that fall within the determined
ranges of mutation scores.

techniques as they will heavily classify towards the majority category [BOSB10].

Barandela et al. indicate that there are three strategies to reduce the problem of

imbalanced training data: Over-sample, under-sample, or internally bias the classi�-

cation process [BVSF04]. It was shown that simple random under-sampling can be

an e�ective solution (though not always the best) to this problem [Jap00,AKJ04].

As Akbani et al. mentioned �. . . we are throwing away valid instances, which contain

valuable information� [AKJ04], therefore we might be limiting the ability to generalize

to new unknown data. The alternative is to perform over-sampling, as Batista et al.

mention �. . . random over-sampling can increase the likelihood of occurring over�tting,

since it makes exact copies of the minority class examples� [BPM04]. We decided

to utilize random under-sampling as it provides a simple approach to dealing with

imbalanced data. Furthermore, the imbalanced data is not too severe (minority to

majority ratio is approximately two to �ve), thus we believe we are not losing that

much information by under-sampling our training data.

To evaluate the cross-validation accuracy of the acquired data we randomly under-

sample the data to balance the amount of data points within each category. We

utilize 191 class-level and 1104 method-level source code units data points from each

category, these values are chosen to maximize the number of data points from the

minority category using random under-sampling. We use the LIBSVM [CL11] library

to perform 10-fold cross-validation over the undersampled data.
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Figure 4.5: Class-level cross-validation accuracy of feature sets on the all subject.

All further box plots can be interpreted as follows: The large box for represents the 25th�75th

percentile range. Within this large box there is a smaller white square which represents the mean
value, while the horizontal line represents 50th percentile (i.e., median). Extending from the large box
on either side are the whiskers which extend to the 5th and 95th percentile in either direction. Past
the end of the whiskers are small diagonal crosses (i.e., X) which represent the min and max values.
Recall that random with respect to our approach is 33.3% due to undersampling to three categories,

which is later shown as a dotted line between the y-axis of the box plot.

Recall that we have a set of features (i.e., attributes for our vector in the SVM) as

listed in Table 3.2. We explore the cross-validation accuracy using di�erent feature

sets (i.e., ¬, , ®, ¯) in Figures 4.5 and 4.6. The cross-validation accuracy of class-

and method-level source code units is performed on the collective all subject over

ten executions to account for random undersampling of our data. To assess our

cross-validation accuracy, we use random selection as our baseline. In our case, since

we undersample our three categories, random selection will have an accuracy of 33.3%.

We can see that all feature sets are able to outperform random which indicates that
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Figure 4.6: Method-level cross-validation accuracy of feature sets on the all subject.

there is some predictive power in the selected feature sets2. We include a subset of

all features (feature sets ¬ ® ¯) to show the e�ects of merging only the source code

and test suite metrics (excluding coverage feature set ). We can clearly see that by

using all feature sets together we can acquire higher cross-validation accuracy then

using the feature sets individually. This observation supports our intuition that using

various source code and test suite metrics together can predict the mutation scores of

source code units well.

We have looked at the overall cross-validation accuracy using the di�erent feature

sets and found that using all feature sets provides the best accuracy. To understand

how di�erent projects behave when we apply our technique, we consider each test

subject independently using all the feature sets. Figure 4.7 illustrates the class-level

cross-validations of each test subjects with the all subject as a comparison. We can

2Feature set ® for method-level source code units (Figure 4.6) does not add any value (as it is
speci�cally tailor for class-level source code units), and thus performs at random.

63



A
c
c
u
ra
c
y
(%

)

0

10

20

30

40

50

60

70

80

A
c
c
u
ra
c
y
(%

)

0

10

20

30

40

50

60

70

80

Subjects

ba
rb
ec
ue jg

ap

js
ou
p

op
en
fa
st

jo
da
�
ti
m
e

co
m
m
on
s
�
la
ng

lo
gb
ac
k
�
co
re

jo
da
�
pr
im
it
iv
es al

l

Figure 4.7: Class-level cross-validation accuracy of each test subject using all feature
sets (¬  ® ¯).

Test Subject Class-Level Method-Level
logback-core 12 138
barbecue 2 36
jgap 27 197
commons-lang 18 132
joda-time 21 259
openfast 24 73
jsoup 13 58
joda-primitives 1 165
all 191 1104

Table 4.5: The number of data points used for each category based on undersampling
the lowest category to provide balanced data, for each test subject.

see that all but barbecue and joda-primitives are similar with respect to mean accuracy.

All of the independent test subjects have larger variation in their accuracies compared

to the method-level accuracies, which is most likely due to the limited data that

each test subject provides on its own. Recall that we are undersampling our data to
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Figure 4.8: Method-level cross-validation accuracy of each test subject using all feature
sets (¬  ® ¯).

achieve balanced categories, thus in some situations the amount of data being used

can drastically be reduced. In the case of barbecue, the undersampling only allowed

two instances of data to be used for each category, which explains the huge variation

that it has. joda-primitives has only one instance for each category, which resulted in

a cross-validation accuracy of 0%. Table 4.5 provides details regarding the number of

data points being used with undersampling. Moving on to the method-level source

code units presented in Figure 4.8, we can see that all but barbecue, joda-primitives,

and joda-time are comparable to the all accuracy with slightly larger variations. Again,

barbecue has a low number of data points being used which can explain the larger

variations in accuracy. With joda-primitives, we have an unusually high cross-validation

accuracy. If we look at Figure A.8 in Appendix A, we can see that the mutation score

distribution is cleanly separated according to the category ranges (i.e., a large number

of 100% and 50% mutation score methods, with the remaining between these values).
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It might just be the case that the joda-primitives 's data is easier to separate with the

SVM, thus allowing it achieve higher accuracy. joda-time presents a slightly higher

cross-validation accuracy then the other test subjects. This could be because it has

the most data points available for the SVM or because it has 48 methods that are

very similar (most likely duplicates) as we saw in the covered mutant distribution (see

Figure 4.4). Similar methods would be classi�ed in the same category, thus this could

slightly in�ate the cross-validation accuracy if this was the case.

4.3.3 Prediction on Unknown Data

Research Question #1: How well can our approach predict on unknown

data, within an individual software system?

Research Question #2: How well can our approach predict on unknown

data, accross software systems?

By using LIBSVM we want to train a classi�er such that it can predict well on

unknown data. In our experiment we consider unused data from undersampling to be

unknown as it is not used during training. Parameter selection (i.e., for gamma and

cost of a RBF kernel) and the training/testing data sets play an important role in

developing a good classi�er. Ultimately, we want to obtain a classi�er that is able

to generalize to new, unknown data. In our speci�c case, we have eight di�erent

test subjects (that are most likely not similar to each other in terms of features) in

which we want to maximize our performance at predicting unknown data. We used

cross-validation in Section 4.3.2 as it mitigates the over�tting problem introduced by

training (i.e., a model becomes speci�cally tuned for the training data set) [HCL03].

Parameter selection also occurred automatically using a grid search approach to �nd
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Test Subject Class-Level
[LOW/MEDIUM/HIGH]

Method-Level
[LOW/MEDIUM/HIGH]

logback-core 36/43/0 0/3/30
barbecue 13/12/0 20/15/0
jgap 24/19/0 26/0/38
commons-lang 0/65/5 0/186/207
joda-time 0/87/44 0/296/946
openfast 0/33/15 0/69/113
jsoup 0/18/26 0/50/157
joda-primitives 0/64/6 0/105/75
all_but_logback-core 48/55/12 138/141/168
all_but_barbecue 15/14/2 56/51/36
all_but_jgap 51/46/27 223/197/235
all_but_commons-lang 18/83/23 132/318/339
all_but_joda-time 21/108/65 256/555/1205
all_but_openfast 24/57/39 73/142/186
all_but_jsoup 13/31/39 58/108/215
all_but_joda-primitives 1/65/7 165/270/240

Table 4.6: The number of data points present in each category for each test subject's
prediction data set after undersampling (if possible) has occurred.

a set of parameters that maximized the cross-validation accuracy on the training data

set.

We conducted a number of tests where we use LIBSVM 's easy script to �nd

the best parameters that maximize cross-validation accuracy and then apply the

classi�er to unknown data. We continue to undersample our data and conduct each

experiment ten times to determine the prediction accuracy. We are interested in

the prediction accuracy of unknown data within a system as well as across systems.

See Table 4.6 for the number of unknown data items being used for each subject

with respect to predictions on unknown data. For within a system we train on the

undersampled data of an individual test subject and predict on the remaining unknown

data (i.e., what is left from the undersampling). For across systems we can consider

the all_but_<subject> subjects, where we train our classi�er on all but the <subject>
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Figure 4.9: Class-level training and prediction accuracy on unknown data within a
system.

and then predict on the excluded test subject. Section 4.3.3.1 presents results for

prediction within a system, and Section 4.3.3.2 presents results for prediction across

systems.

4.3.3.1 Prediction Within a System

This experiment explores the capability of predicting unknown source code units

within a software system. Situations such as the addition of new features or source

code units �ts this experiment.

The class-level training and prediction accuracy of unknown data within a system

is shown in Figure 4.9. We can see that a number of the test subjects have large

variations in their accuracy, and in four cases actually hit 0%. These 0% situation

indicate that nothing was correctly predicted, we how this situation might be occurring
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Figure 4.10: Method-level training and prediction accuracy on unknown data within a
system.

in Section 4.3.4. We also can note that half of the test subjects for class-level prediction

of unknown data within a system had a performance worse than random. The average

prediction accuracy for this experiment is 31.7%±10.2%, which is lower than random

with a large standard deviation.

The method-level training and prediction accuracy of unknown data within a

system is shown in Figure 4.10. The mean average prediction accuracies of the test

subject vary, which suggests that the prediction quality might depending on the project

itself, or that more data is required for this experiment. While joda-primatives's

mean prediction accuracy for class-level was 0%, the mean accuracy for method-level

was approximately 90%. It seems to be that joda-primatives represents an outlier in

our test subjects. All mean prediction accuracies exceed random for method-level
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predictions, while class-level predictions did not fare as well. This suggests that

class-level predictions are harder to predict because:

� Classes have much more factors involved in them (i.e., a set of methods) thus

harder to predict.

� Our approach does not account for overloaded, anonymous, and abstract methods

thus the classes are partially incomplete in data.

� For our experiment we had considerably less class-level data available than that

of method-level data.

The average prediction accuracy for this experiment is 53.2%±5.1%, which is higher

than random with half the standard deviation of the class-level predictions.

4.3.3.2 Prediction Across Systems

This experiment explores the capability of predicting unknown source code units

across a software system. Whether predictions will fare as well as predictions within a

system (see Section 4.3.3.1 is explored in this section.

The class-level training and prediction accuracy of unknown data across a system

is shown in Figure 4.11. Of the eight test subjects three of them are below random

with respect to mean prediction accuracy. With respect to Figure 4.9, the class-level

prediction accuracy within a system has much more variation in accuracy than across

systems. The less variation in prediction accuracy across systems is most likely due to

the fact of having more data items present as we now consider seven of the test subjects

for training data. The average prediction accuracy for this experiment is 34.4%±4.7%,

which is slightly higher than random and is an improvement over the class-level within

systems (only because the within systems had a 0% for joda-primatives, otherwise

within a system average accuracy would have been 36.2%).
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Figure 4.11: Class-level training and prediction accuracy on unknown data across
systems.

The method-level training and prediction accuracy of unknown data across a

system is shown in Figure 4.12. Of the test subjects all but joda-primatives have a

mean accuracy that exceeds random. With respect to Figure 4.10, the method-level

prediction accuracy within a system has much more variation in accuracy than across

systems. The less variation in prediction accuracy across systems is most likely due

to the fact of having more data items present as we now consider seven of the test

subjects for training data. The average prediction accuracy for this experiment is

37.6%±2.6%, which is slightly higher than random. With respect to the prediction

accuracy within a system for method-level source code units this experiment has

shown a drop of 15.6% in prediction accuracy. This drop in accuracy suggests that

prediction across systems is a more challenging prediction to make regarding mutation

score prediction.
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Figure 4.12: Method-level training and prediction accuracy on unknown data across
systems.

4.3.4 Optimization and Generalization

Research Question #1: Can we optimize our approach to achieve better

performance by using a di�erent measure of classi�er performance?

Research Question #2: Can we identify a general set of SVM param-

eters that maximize mutation score prediction performance on unknown

data?

We kept track of the frequency of parameter pairs selected over all the prediction

experiments conducted in Section 4.3.3. As a result of LIBSVM 's script for parameter

selection, we saw 57 di�erent pairings of the RBF kernel parameters cost and gamma

(described in Section 2.2.2). This indicates that the classi�ers are being tuned

speci�cally to maximize the cross-validation accuracy. Due to undersampling, di�erent
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parameters are being used to ensure a maximization of cross-validation accuracy.

To encourage generalization of unknown projects and data, ideally we want to �nd

a parameter pairing that maximizes generalizability, e�ectively the classi�cation

performance on unknown data. As our approach initially requires mutation testing

results to perform training it might be appropriate to select the best parameters

for the given data. In the previous section for predictions on unknown data (see

Section 4.3.3), we explored predictions within and across systems. For this experiment

we continue with the same setup by considering across and within systems. Regarding

this experiment it becomes much more clear on why we need a generalizable set of

parameters that hopefully perform well on most test subjects. In terms of usability, if

we can �nd a general set of parameters for predicting mutation scores, this will lessen

the need to speci�cally tune every classi�er prior to prediction.

We noticed that in some situations accuracy is not the best measure for a classi�er's

e�ectiveness. For example, given imbalanced data for the testing/unknown data set,

the accuracy could misrepresent the performance of the classi�er. The raw outputs

of our classi�er using two di�erent sets of parameters on the joda-time subject are

shown in Figures 4.13 and 4.14. In both of the raw outputs we can see a confusion

matrix along with performance measures. We can see in the raw output in Figure 4.13

that all predictions fall in category 2. The joda-time data set is imbalanced with the

majority of data (i.e., 76.2% of the data) belonging to category 2. Even with the

biased predictions made towards the majority category, the accuracy of the prediction

is 76.2%. In contrast to the the raw output presented in Figure 4.14 we can see that

the accuracy is slightly lower at 71.7%. Now even though the accuracy in the second

example is slightly lower we can consider it a superior classi�er to the former as it

actually treats the categories in a more unbiased fashion (i.e., one category is not

receiving the majority of predictions like the previous example). To alleviate this
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Performance Measure Bad Classi�er
(Figure 4.13)

Good Classi�er
(Figure 4.14)

Mean Accuracy 76.2% 71.7%
Mean F-score 28.8% 45.4%
Mean Balance Accuracy 50.0% 62.3%
Mean Youden-index 00.0% 24.6%

Table 4.7: Comparison of performance measures for a bad classi�er vs. a good classi�er.

problem, we consider other measurements that can be used to assess the predictive

capabilities of classi�ers, speci�cally the following measures:

� F-score represents the harmonic mean of the recall and precision for a cate-

gory [SJS06]. A score closer to 1 (i.e., 100%) represents better performance.

F-score = 2 ∗ recall ∗ precision
recall + precision

(4.1)

� Balanced Accuracy represents the average accuracy obtained on the cat-

egory [BOSB10, SJS06]. A score closer to 1 (i.e., 100%) represents better

performance.

balanced accuracy =
recall + specificity

2
(4.2)

� Youden's Index represents the classi�er's ability to avoid failure [SJS06]. It

can also be calculated using the balanced accuracy. A score closer to 1 (i.e.,

100%) represents better performance.

youden's index = recall − (1− specificity) (4.3)

youden's index = 2 ∗ balanced accuracy− 1 (4.4)
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Using their accuracy, the bad and good classi�ers were unable to distinguish the

better classi�er (i.e., fair predictions over all categories), while the three aforementioned

performance measures are capable of doing so. We take the average value of the

performance measures (i.e., the sum divided by the three categories for each measure)

and compare classi�ers in Table 4.7. The comparison shows that the new performance

measures better re�ect the performance of the classi�er than traditional accuracy in

all three cases.

To further generalize our predictions, we conducted our own grid search with

comparisons to prediction accuracy instead of cross-validation accuracy. As brie�y

mentioned in Section 4.1.1 a grid search performs a search over a range of parameters,

which in our case is cost and gamma. We use a coarse search over the parameter

ranges between 0.00001 and 10000 by adjusting the order of magnitude by a factor

of ten. The following outlines our strategy to �nd the pairing of parameters that

maximizes the performance of our SVM on predicting unknown data:

1. Grid search using coarse parameter ranges between 0.00001 and 10000 by ad-

justing the order of magnitude by a factor of ten.

2. We maximize the F-score (we could have used Balance Accuracy or Youden-index)

on unknown data (i.e., what remains after undersampling or the excluded test

subject) instead of on cross-validation of the training data.

3. We conduct the previous two steps (i.e., grid search of an data set) on each of the

individual test subjects and also for the all_but_<subject> subjects. For each

test subject we perform ten executions for each parameter pairing to account

for undersampling.

4. Use a simple rank summation (i.e., ascending rank n has a value of n) to tally

the parameter pairings that consistently performed the best on the data sets.
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5. We pick the parameter pairing that perform best on both the individual subjects

and the all_but_<subject> subjects.

Using our search strategy as described we attained the following SVM parameters

for class-level [cost=100, gamma=0.01] and method-level [cost=100, gamma=1]. These

parameters were found to o�er the greatest generalizable over the di�erent test subjects.

Furthermore, by maximizing F-score instead of accuracy these parameters will avoid

issues presented by using accuracy alone. Section 4.3.4.1 presents results for prediction

within a system, and Section 4.3.4.2 presents results for prediction across systems.

Both which utilize the found set of parameters that o�er the greatest performance with

respect to maximizing F-score on predicting unknown data. A comparison between

pre/post generalized parameter prediction performance is explored in Section 4.3.4.3.

4.3.4.1 Prediction Within a System

This experiment is the same as the previous one (see Section 4.3.3.1) in that we are

concerned with assessing the prediction capability within a system. The only di�erence

is that these results are based on a generalized set of parameters found through a grid

search (found in Section 4.3.4).

The class-level training and prediction accuracy of unknown data within a system

using generalized parameters is shown in Figure 4.15. We can see that a number

of the test subjects still have large variations in their accuracy when compared to

the same experiment without the generalized parameters (see Figure 4.9). There

are no more cases of 0% mean accuracy anymore, which is a good sign that the

generalized parameters using F-score actually alleviated this situation. Three of the

eight subjects have a mean accuracy lower than random. The average prediction

accuracy for this experiment is 36.7%±10.1%, which is slightly higher than random
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Figure 4.15: Class-level training and prediction accuracy on unknown data within a
system using generalized parameters [cost=100, gamma=0.01].

and is an improvement of +5.0% over the non-generalized parameter experiment (see

Table 4.8).

The method-level training and prediction accuracy of unknown data within a

system using generalized parameters is shown in Figure 4.16. We can see that the

results are similar when compared to the same experiment without the generalized

parameters (see Figure 4.10). The average prediction accuracy for this experiment is

56.8%±6.2%, which is higher than random and is an improvement of +3.6% over the

non-generalized parameter experiment (see Table 4.10).

4.3.4.2 Prediction Across Systems

This experiment is the same as the previous one (see Section 4.3.3.2) in that we are

concerned with assessing the prediction capability across systems. The only di�erence
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Figure 4.16: Method-level training and prediction accuracy on unknown data within a
system using generalized parameters [cost=100, gamma=1].

is that these results are based on a generalized set of parameters found through a grid

search (found in Section 4.3.4).

The class-level training and prediction accuracy of unknown data across systems

using generalized parameters is shown in Figure 4.17. When compared to the same

experiment without the generalized parameters (see Figure 4.11) we can see slight

improvements in terms of mean accuracy, in particular there are only two test subjects

with less than random mean accuracy. The average prediction accuracy for this

experiment is 39.0%±3.9%, which is slightly higher than random and is an improvement

of +4.6% over the non-generalized parameter experiment (see Table 4.9).

The method-level training and prediction accuracy of unknown data across systems

using generalized parameters is shown in Figure 4.18. We can see that the results are

similar when compared to the same experiment without the generalized parameters
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Figure 4.17: Class-level training and prediction accuracy on unknown data across
systems using generalized parameters [cost=100, gamma=0.01].

(see Figure 4.12). The average prediction accuracy for this experiment is 42.8%±1.8%,

which is higher than random and is an improvement of +5.2% over the non-generalized

parameter experiment (see Table 4.11).

4.3.4.3 The E�ects of Generalized Parameters on Prediction Performance

Using the generalizable parameters we can see that in both class- and method-level

results, the resulting accuracy usually increases slightly. In some situations we can

even see a decreased in the standard deviation for accuracy. In particular, we see that

in class-level predictions, the possibilities of 0% accuracy (which occurred in four of the

test subjects without the generalizable parameters) no longer occurs. This happened

as a result of selecting parameters that maximized F-score instead of cross-validation

accuracy. This change treats the predictions of categories more fairly (i.e., avoiding
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Figure 4.18: Method-level training and prediction accuracy on unknown data across
systems using generalized parameters [cost=100, gamma=1].

predicting all of one category, which could be the wrong category). To further see

the bene�ts of using generalized LIBSVM parameters we compared the individual

accuracies and standard deviation of each test subject.

As presented in Tables 4.8 � 4.11, we can see the gains and losses in mean and

standard deviation of prediction accuracy resulting from the application of generalized

parameters. In terms of comparative changes, an improvement for mean accuracy

would be a gain (i.e., better prediction accuracy) while for standard deviation an

improvement would be a loss (i.e., smaller variation in prediction accuracy). Of the 16

class-level test subjects presented in Table 4.8 and 4.9, 12 out of 16 test subjects saw

an improvement in mean accuracy and 9 out of 16 test subjects saw an improvement in

standard deviation. Of the method-level test subjects presented in Table 4.10 and 4.11,

13 out of 16 test subjects saw an improvement in mean accuracy and 10 out 16 test
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subjects saw an improvement in standard deviation. These results show that the

generalized parameters overall had a positive e�ect on the test subjects's performance.

Overall, the following summarizes the results of using generalized parameters for

our approach on prediction of unknown data within and across systems:

� Class-level average prediction accuracy on unknown data within systems saw

an improvement of +5.0% with an improvement of -0.1% in standard deviation.

Resulting in a average prediction accuracy of 36.7%±10.1%.

� Class-level average prediction accuracy on unknown data across systems saw an

improvement of +4.6% with an improvement of -0.8% in standard deviation.

Resulting in a average prediction accuracy of 39.0%±3.9%.

� Method-level average prediction accuracy on unknown data within systems saw

an improvement of +3.6% with a decline in standard deviation of +1.1. Resulting

in a average prediction accuracy of 56.8%±6.2%.

� Method-level average prediction accuracy on unknown data within systems saw

an improvement of +5.2% with a decline in standard deviation of +0.8. Resulting

in a average prediction accuracy of 42.8%±1.8%.

With respect to predictions in general, method-level prediction have a higher mean

accuracy in all situations (i.e., within and across systems). Furthermore, predictions

within systems tend to have higher standard deviation than predictions across systems.

This di�erence in standard deviation most likely is attributed to the abundance of data

items present for training and prediction. With respect to prediction accuracy the

class-level predictions actually performed better across systems only by a di�erence of

2.3%, while method-level predictions performed better within systems by a di�erence

of 14.0%.
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The improvements in both class- and method-level are both a side bene�t of using

generalized LIBSVM parameters, as the main purpose was to nullify the need for

parameter selection (i.e., no need to grid search on known data) to make predictions

on unknown data. After optimizations and generalization, our approach for mutation

score prediction using source code and test suite metrics can out perform random in

nearly all test subjects observed.

4.3.5 Impact of Training Data Availability on Prediction Ac-

curacy

Research Question #1: How is the prediction accuracy impacted by the

availability of training data?

Research Question #2: Is it possible to only train on a fraction of the

source code units and achieve approximately the same prediction perfor-

mance on the remaining source code units?

As we saw in the previous section using our approach we achieve 56.8% prediction

accuracy of method-level source code units within systems. This result exceeds random

by 23.5% and therefore shows that our approach is capable of predicting mutation

score categories using source code and test suite metrics at least within systems. As

mentioned in the thesis statement, �The predictions can be used to reduce the resource

cost of mutation testing in traditional iterative development.�. Iterative development

is a software development life cycle that allows developers to work on small changes

which eventually adds to a large change with respect to a software system. Traditional

iterative development may involve expanding/reducing/refactoring the SUT, and/or

attempting to improve the test suite. By including mutation testing between iterations

to determine if any improvements have occurred can be costly if done in a naive manner
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(i.e., re-conduct the whole mutation test process using the new version of the SUT).

Even with an intelligent approach of selective mutation (i.e., only mutation testing

source code units that were added/removed/modi�ed since the previous iteration),

the cost of mutation testing can still be substantial.

There is no consensus on good ratios for training data and testing data. Using the

common 10-fold cross-validation [Koh95] as a guideline, a 9:1 ratio for training data to

testing data is a good rule-of-thumb. Using 90% of a large data set for training might

be considered wasteful when considering a classi�er's learning curve. Provost et al.

mention �Learning curves typically have a steeply sloping portion early in the curve, a

more gently sloping middle portion, and a plateau late in the curve� [PJO99]. Using

a representative sample of the available training data should retain nearly the same

predictive performance with respect to supervised learning. Through an empirical

evaluation, Provost et al. demonstrated that the minimum amount of training data

required to maximize the prediction performance of a classi�er (i.e., reaching the

plateau of the learning curve) varies based on the data set. Using a progress random

sampling algorithm, Provost et.al. were able to determine the minimum amount of

training data for their data sets, they concluded that the minimum amount of data

required is di�erent for each data set. From their experimentation with three data

sets they found that the minimum percent of training data required for maximum

prediction performance was 2% (of 100000 items), 12% (of 100000 items) and 25%

(of 32000 items). Finally, Provost et al. were able to demonstrate the bene�t of

random sampling to reduce the training set, namely a reduction in computational

cost using a smaller training data set. Wang et al. also demonstrated random

sampling reduce the amount of training data necessary to achieve maximum prediction

performance [WNC05]. Wang et al. evaluated a range of random sampling (ranging
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Figure 4.19: Class-level prediction accuracies of each test subject using training and
prediction with various amounts of training data.
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Figure 4.20: Method-level prediction accuracies of each test subject using training
and prediction with various amounts of training data.
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from 10%-100%) of four data sets and the greatest loss in prediction performance was

approximately 10.5%.

Random sampling appears to perform well for reducing the training set size

while retaining prediction performance [PJO99,WNC05]. There exist more complex

approaches to this problem, one uses centroids of weighted clusters which essentially

groups similar items in the training set and treating them as one item [NBP08]. With

our approach with respect to data availability, we are interested in minimizing the data

required to make accuracy predictions. Similar to the previous research on random

sampling to reduce the training data set, we decided to explore how it a�ects our

prediction accuracy. Ideally we can reduce the resource cost of mutation testing in

traditional iterative development with intermixed iterations of mutation testing and

predictions by performing mutation testing on a portion of the SUT and predicting

the remaining portion.

We conducted a number of training and prediction executions using di�erent

amounts of source code units for training. We took the amount of undersampled

training data points and divided this amount by intervals of 0.5 from 1.0 to 10.0.

We conducted ten executions using the generalized parameters from Section 4.3.4

for each new training amount and recorded the mean accuracy. In situations where

the new training amount was identical to another's interval their resulting accuracy

were averaged. As we can see in Figure 4.19, the class-level source code units did not

show much information as there was a limited number of unique points for the test

subjects. This is due to the limited data set available for the test subjects, recalling

barbecue only had two data points per category, while joda-primitives only had one.

Unfortunately there does not seem to be enough data to warrant any observation from

the class-level. With Figure 4.20 we can see an apparent trend for method-level source

code units, and there appears to be a log(n) relationship with prediction accuracy
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and the amount of data used for training (i.e., the learning curve). joda-primitives

shows exactly the trend were expecting: the prediction accuracy tapers o� reaching its

maximum value between 30%�35%. Looking at other test subjects we can see similar

behaviour, though not as pronounced.

We know that there exists a minimum number of training data points required

to reach the prediction accuracy plateau, however with our data sets we might not

have enough data to see this e�ect. Considering that the previous research works see

results with a little as 2% of the training data used, we cannot possibly achieve results

like that considering we have less than 1000 items for our individual test subjects

comparative to 100000 items. A quick observation of our results suggests that we

could probably use a fraction of the available data from a SUT to achieve near optimal

prediction accuracy. In our case we would suggest using one third or more of the

available data for training purposes to maximize prediction accuracy. By considering

a fraction of the mutants for training purposes it is not necessary to evaluate the

remaining fraction and our approach could be used to predict the mutation score

of the remaining source code units. To account for the potential mis-classi�cations

(considering we have approximately 50% prediction accuracy) it would be best to

cycle the training data such that the we select a new random sample that is mostly

unique in each iteration. With enough iterations all mutants would have been actually

evaluated once, while only really evaluating a fraction of the mutants from the SUT.

As a side e�ect, we can assume that at some point all mutants have actually been

evaluated and we could keep this information in our database and reuse it for training

purposes.
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4.4 Threats to Validity

We consider the four categories for threats to validity with respect to experimentation

in Section 4.4.1 to 4.4.4.

4.4.1 Conclusion Validity

Threats to conclusion validity involve issues with the process and statistical means

to draw any conclusions regarding experiments [WRH+00,WKP10]. We utilized

various summary statistical measures to determine the conclusions of our results. In

particular, we used mean, standard deviation, quartiles and frequencies to understand

our experiments with respect to their results. Furthermore, with our results we

conducted a minimum of ten executions per experiment to mitigate the randomness of

our results. With respect to drawing conclusions, we compared the average accuracy

to what a random prediction would achieve. Thus by comparing the mean accuracies

we were able to compare our approach to random. In retrospect, we should have

performed more executions per experiment to further reduce the noise. Furthermore

we could have performed a statistical test to understand the statistical signi�cants of

our comparison.

4.4.2 Internal Validity

Internal threats to validity are concerned with factors that could in�uence the indepen-

dent variable in our experiments [WRH+00,WKP10]. Our independent variables are

the features themselves from the eight open source software systems that we selected.

Obviously there could be issues that can arise based on the measures that our tools

returned for each software system, though these tools are well established and provide

simplistic measures (i.e., issues are unlikely to arise due to incorrect results). With
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respect to the mutants themselves that are generated by the Javalanche mutation

testing tool, the version used was experimental and could be more susceptible to

incorrect results. Furthermore Javalanche uses a subset of method-level mutation

operators, which could have a major impact on the class-level source code units. With

respect to true internal validity the independent variables are not in�uencing each

other in ways that we were not aware of that could be detrimental to our experiment.

4.4.3 Construct Validity

Whether the independent and dependant variables we are using actually align with the

problem with which we are experimenting is an issue with construct validity [WRH+00,

WKP10]. In our experiment we are using a set of features extracted from open

source software systems (i.e., the independent variables) to determine the accuracy of

predicting mutation score (i.e, the dependant variable). Machine learning performance

measures (i.e., accuracy, F-score, etc. . . ) are valid dependant variables as they measure

the e�ectiveness of the classi�cation technique. The independent variables for machine

learning are harder to determine by nature, there is often no clear set of features

for making predictions. For our experiment, we observed the two main components

involved in mutation testing, the source code and test suite. These two components

can be represented in quanti�able metrics (i.e., source code and test suite metrics)

which are commonly known and used in Software Engineering research.

4.4.4 External Validity

With experiments, one of the major concerns involves the ability for the results to

generalize outside of the study. That is external validity [WRH+00,WKP10]. With our

experiment we speci�cally avoided toy-problems and opted to use open source software
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systems, which are real software systems. These software systems are not industrial

nor are they extremely large-scale (i.e., 100000+ SLOC), thus we are unsure if the

results would generalize to such software systems. The test subjects we chose had some

variation in domain (i.e., library, framework, etc. . . ) though our set obviously does not

act as a representative of di�erent domains. In addition, most of the test subjects we

used had relatively good test suites (i.e., of the covered mutants the mutation scores

were above 73% except for one test subject). Due to this, we are unsure how our

prediction would perform on software systems with poor test suites. Furthermore we

observed only the Java language, whether these results generalize to other languages

has not been veri�ed. As stated by Kitchenham and Mendes �It is invalid to select

one or two data sets to `prove' the validity of a new technique because we cannot be

sure that, of the many published data sets, those chosen are the only ones that favour

the new technique� [KM09]. We used only eight open source projects as our data sets

for our prediction technique, however even though this is more then one or two it is

still quite limited. Mutants can be in�uenced by external factors such test suite size

and mutation operators as it was found that class-level mutants are harder to detect

than traditional method-level mutants [NK11]. As we used only traditional mutation

operators this could have an impact on the generalizability, along with the varying

sizes of the test suites of our test subjects.

Recall that our approach for predicting mutation scores based on source code and

test suite metrics utilizes a number of tools:

� Javalanche to collect mutation scores.

� Eclipse Metrics Plugin to collect source code and test suite metrics.

� EMMA to collect additional test suite coverage metrics.

� LIBSVM to perform the training and prediction of the source code units.
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We selected tools based on the metrics they could provide as well as the the output

format, yet there might be other tools that could have performed better. In particular,

the mutation testing tool we selected is not the newest, and omits a whole class of

mutations (i.e., class-level object-oriented mutants), which could be misrepresenting

the mutation scores. The tools used to collect the features of the source code units

might not be comprehensive in terms of features that describe the source code units.

4.5 Summary

In this chapter we covered the following topics that demonstrate out approach on

several test subjects:

� In Section 4.1 we covered our experimental setup with respect to environment,

test subjects, tool con�guration and data preprocessing.

� In Section 4.2 we discussed our experimental method for the �ve experiments

that were conducted in this chapter.

� In Section 4.3 we covered a number of experiments and discussed their results.

Speci�cally we experimented with mutation score distribution (Section 4.3.1),

cross-validation (Section 4.3.2), prediction (Section 4.3.3), optimization and

generalization (Section 4.3.4), and the impact of data availability (Section 4.3.5).

� In Section 4.4 we discussed conclusion, internal, construct and external threats

to validity of our empirical evaluation.
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Chapter 5

Summary and Conclusions

5.1 Summary

Mutation testing is a resource intensive process, potentially producing thousands of

mutants for a given software system. Recall that mutation testing generates a set of

mutants from the source code of the SUT and than evaluates these using the provided

test suite. A mutation score is calculated as a result of mutation testing, which

indicates how e�ective the test suite is at �nding faults (i.e., test suite e�ectiveness).

There have been a number of research studies aimed at improving mutation

testing performance by adjusting the mutation testing process (i.e., better mutation

representation/generation/evaluation), instead we applied machine learning to predict

the mutation score of source code units. As described in Chapter 3 we use a SVM to

make predictions based on the features of class- and method-level source code units.

We use the source code and test suite as the source of metrics for our predictions as

they are directly involved in the mutation testing process. Speci�cally, we identify

four initial sets of metrics (i.e., feature sets) from the SUT: source code, coverage,

accumulated source code, and accumulated test suite.
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We evaluated our approach using eight test subjects that contained 1689 classes,

113686 method and 10233 test cases. Using the available data, we proposed �ve

research questions in Section 4.3. The following summarizes our �ndings:

� In Section 4.3.1 we determined that the eight test subjects had e�ective test suites,

all but one exceeding a 73% mutation score. By considering the distribution of

mutation scores for our test subjects, we were able to determine three suitable

ranges for mutation score categories to abstract the real-values of mutation

scores.

� In Section 4.3.2 we used the available data and evaluated the di�erent feature

sets over all our test subjects. Using all feature sets provided the greatest

cross-validation accuracy, outperforming the feature sets individually.

� In Section 4.3.3 we evaluated our prediction approach on unknown data within

individual test subjects and across test subjects. Our results showed that class-

level mutation score was more di�cult to predict, while method-level predictions

performed better than class-level predictions. Furthermore, method-level predic-

tions of unknown data within an individual test subject yielded higher accuracy

than across test subjects.

� In Section 4.3.4 we explored avenues to optimize and generalize our prediction

approach. We identi�ed that using cross-validation accuracy for SVM parameter

selection can be ine�ective. We presented several alternative and more e�ective

performance measures, namely F-score. We performed our own grid search to

identify a single set of SVM parameters that maximized F-score across all data

sets. We identi�ed generalizable SVM parameters for class- and method-level

predictions, and re-evaluated our prediction accuracy using the new parameters.
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As a result we were able to increase the average prediction accuracy for class-

and method-level source code units by +5.0% and +3.6% within systems, and

+4.6% and +5.2% across systems for class- and method-level source code units.

� In Section 4.3.5 we conducted an experiment that observed how our approach's

prediction accuracy changed with the availability of data. By limiting the amount

of training data used for training we showed that a learning curve was clearly

de�ned in some of our test subjects while not as pronounced in others. This

experiment demonstrates that it is possible to train on a fraction of the available

data and predict the remainder with near optimal accuracy. We showed the

applicability of using our approach for an iterative development environment

where it is possible to use mutation testing on a fraction of the available data

and predict on the remaining amount.

5.2 Contributions

Based on our empirical evaluation (see Chapter 4) we produced the following contri-

butions to the domain of mutation score prediction:

� Proposed a new approach for predicting the mutation score of a class- and

method-level source code unit using source code and test suite metrics. We

performed an empirical evaluation of our approach over eight open source test

subjects.

� Identi�ed 33 speci�c metrics (further grouped into four logical sets) that charac-

terize source code units with respect to mutation score predictions.

� Demonstrated through cross-validation that the four feature sets in combination

provided more accuracy than that of the feature sets individually.
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� Demonstrated that prediction on unknown data is possible. Predictions within an

individual software system has more variation in the mutation score performance

than predictions on an unknown software system. Speci�cally, we showed that

using all the available features we achieved an average prediction accuracy within

systems of 36.7% and 56.8%, for class- and method-level source code units. We

also achieved an average prediction accuracy across systems of 39.0% and 42.8%

for class- and method-level source code units.

� Identi�ed a generalizable set of SVM parameters that maximized F-score over

our test subjects. These parameters increased prediction accuracy (+5.0%

for class-level within systems, +4.6% for class-level across systems, +3.6% for

method-level within systems, and +5.2% for method-level across systems) over

that was determined through cross-validation. We achieved higher than random

prediction accuracies using generalized SVM parameters, which removes the

need of �nding suitable parameters for new data.

� Demonstrated that it is not necessary to train on 90% of the available data (as

in 10-fold cross-validation) in order achieve near optimal prediction accuracy.

In summary, our approach is novel in that we considered both source code and

test suite metrics as factors to make mutation score predictions. We also performed

feature selection on the collected features in Appendix B, results indicated that it is

possible to reduce the feature set and retain prediction accuracy.

5.3 Limitations

Several limitations of our approach and empirical evaluation include:
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� In our approach we removed abstract, overloaded and anonymous source code

unit (due to their complexity), which reduced our usable data and could misrep-

resented the actual test subject's software systems.

� We calculated the NOT (i.e., number of tests) metrics in our approach with

Javalanche, ideally this should be calculated using EMMA.

� We used only eight open source test subjects, this is most likely not a represen-

tative sample of all software systems.

� We used only considered 33 possible source code and test suite metrics to predict

mutation testing scores, mostly likely there are more metrics that could have

been used for our predictions.

� We evaluated our approach using three categories to abstract the exact mutation

score prediction. The results may not represent prediction on a �ner grain set of

mutation score categories.

Furthermore the issues concerning the threats to validity (see Section 4.4) are also

limitations to our approach and empirical evaluation.

5.4 Future Work

The future work for this thesis can be divided into two topics:

� Improvement and optimization of our approach for predicting mutation scores

(Section 5.4.1.

� Further experimentation with additional statistical measures to validate the

generalizability of our results (Section 5.4.2).
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Furthermore, obviously we would like to address the limitations listed in the

previous section.

5.4.1 Optimizing and Improving Approach

In our approach we discard abstract/overloaded/anonymous source code units as they

were a bit more complex to handle during the construction of our approach. As for

future work it would be wise to reconsider these omitted details as they obviously

contribute to the data (i.e., mainly for class-level source code units, which might

explain why their prediction accuracy was lower). We would like to correctly determine

the NOT (i.e., number of tests) metric without relying on Javalanche for coverage

data. EMMA is fully capable in determining the NOT feature.

We would like to further explore additional metrics and other facets of a software

system. For example, we would like to use the Software Testing and Reliability

Early Warning (STREW) metric suite [NWO+05,NWVO05] or even the number of

assertions within test cases. Furthermore, we could explore the mutants themselves

as the mutation generation is not the expensive aspect of mutation testing, or even

runtime information. Negappan et al. mined metrics to predict component failures

and stated that �Predictors are accurate only when obtained from the same or similar

projects� [NBZ06]. This suggests that prediction across software systems, as we did

in for our empirical evaluation is not ideal. We would like to further investigate this

with respect to our approach, and see if we can achieve higher prediction performance

using similar projects while predicting across software systems.

By using Javalanche we unfortunately did not have access to class-level object-

oriented mutation operators, and a limited subset of traditional method-level mutation

operators. Future work would be required to add these missing mutation operators into

Javalanche as it would not only bene�t this thesis but also those that use Javalanche.
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Furthermore, there exists more than the traditional mutation operators that generate

typical faults, it would be a great addition to incorporate security and concurrency

mutation operators into our approach. Equivalent mutants pose a challenge in in-

terpreting mutation testing results, Javalanche has an approach that attempts to

mitigate the impact of equivalent mutants that we ignored. Further work can integrate

this consideration into our approach, we initially did not include it as it would further

reduce our available data.

There are standard optimizations that can be done for our implementation such

as better data structures and taking advantage of concurrency. We also would like

to adapt our approach so that others can use it from a usability point-of-view. For

example, a simple script that allows a user to specify source code unit(s) to be

predicted based on a already trained classi�cation model or as an Eclipse plugin. As

our approach uses a classi�cation approach for prediction, it is possible to extract from

the SVM the probability that a vector belongs to a speci�c category. We would like

to take advantage of this and present this data as well as it illustrates the con�dence

in the predictions.

5.4.2 Statistical and Experimental Evaluation

With our experimental setup we utilize a minimum of ten executions to reduce the

noise in our results. To further reinforce our results, future work would involve

increasing the number of executions (i.e., between 25 and 100 executions). In our

analysis of the results we primarily used summary statistics (i.e., mean, standard

deviation, etc. . . ), while these statistics provide valid summary of the results there

are other statistical measures that are stronger (i.e., con�dence interval, hypothesis

testing, etc. . . ). Furthermore we performed a number of experiments to evaluate our

approach, these alone are not comprehensive in what could have been done. Additional
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analysis on the features and their relationship with each other and mutation scores

would be an interesting study to conduct as it may provide additional detail on the

source code units. Further investigation on the data is required to understand whether

the predictive ability of our approach depends on the distribution/availably of data

and/or the features used. There still remains a lot of experimentation to be done in

this area with respect to our approach. For future work we would like to evaluate our

current results and new experiments with stronger statistical measures.

With respect to our implementation we utilized a number of tools to gather features

and the mutation scores. We would like to explore using other tools as alternative

as this can show that our approach still functions correctly independently of the

tools used. Due to our limited set of test subjects we did not have a wide variety

of domains, source sizes, test suite sizes and mutation scores. By including more

open source and potentially industrial software systems we can cover more pairings

of the aforementioned criteria, which will shine insight on the generalizability of our

approach.

5.5 Conclusions

Mutation testing is just too costly, which inhibits industry adoption. We stated the

following in Chapter 1:

Thesis Statement: The use of source code and test suite metrics in com-

bination with machine learning techniques can accurately predict mutation

scores. Furthermore, the predictions can be used to reduce the performance

cost of mutation testing when used to iteratively develop test suites.

We followed through with the thesis statement with the creation of such an

approach to predict mutation scores using source code and test suite metrics. We
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discussed the necessary topics required for this thesis in Chapter 2. We described our

approach along-side an example in Chapter 3. We outlined a set of experiments in

Chapter 4 that evaluated our approach to answer several research questions related to

our thesis statement. Finally we present limitations, threats to validity and future

work in Chapter 5.

With our approach we showed that it is indeed possible to predict mutation scores

of source code units using source code and test suite metrics. For predictions on

unknown source code units within a software system, we were able to achieve an average

accuracy of 56.8% for method-level predictions. Exploratory work on method-level

prediction of unknown data across software systems provided lesser accuracy at 42.8%.

Both of these values are higher than random prediction accuracy (i.e., 33.3%) using a

general set of SVM parameters, which eases the complexity of tuning our technique.

Class-level predictions did not fare as well compared to method-level predictions, with

36.7% accuracy within systems and 39.0% accuracy across systems. Contrary to other

prediction techniques (i.e., bug detection) we observed the test suite in addition to the

source code, which is quite novel. With future work we hope that test suite metrics

can be further used in existing and future research. Furthermore we anticipate that

our approach still has room for improvement with respect to generalizability and

prediction accuracy.

103



Bibliography

[ABD+79] A.T. Acree, T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward.
Mutation analysis. Technical Report GIT-ICS-79/08, School of Infor-
mation and Computer Science, Georgia Institute of Technology, Sep.
1979.

[ABL05] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proc. of the 27th Int Conf. on Soft. Eng.
(ICSE '05), pages 402�411, May 2005.

[ABLN06] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. Using mutation
analysis for assessing and comparing testing coverage criteria. IEEE
Trans. on Soft. Eng., 32(8):608�624, Aug. 2006.

[ABM98] P.E Ammann, P.E. Black, and W. Majurski. Using model checking to
generate tests from speci�cations. In Proc. of the 2nd IEEE Int. Conf.
on Formal Eng. Methods (ICFEM'98), pages 46�54, Dec. 1998.

[AC94] F.B. Abreu and R. Carapuça. Object-oriented software engineering:
Measuring and controlling the development process. In Proc. of the 4th
Int. Conf. on Soft. Quality, 1994.

[AD91] H. Almuallim and T.G. Dietterich. Learning with many irrelevant features.
In Proceedings of the 9th National Conf. on Arti�cial intelligence (AAAI
'91), volume 2, pages 547�552, 1991.

[AE09] R Abraham and M Erwig. Mutation operators for spreadsheets. IEEE
Trans. on Soft. Eng., 35(1):94�108, Jan.�Feb. 2009.

[AKJ04] R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines
to imbalanced datasets. Proc. of the 11th European Conf. on Machine
Learning (ECML '04), pages 39�50, 2004.

[Alp04] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

[AMM95] C. Anderson, A.von Mayrhauser, and R.T. Mraz. On the use of neural
networks to guide software testing activities. In Proc. of the IEEE Int.
Test Conf., pages 720�729, 1995.

104



[bar] Barbecue. web page: http://barbecue.sourceforge.net/, (last ac-
cessed Jun. 11, 2012).

[BCD06] J.S. Bradbury, J.R. Cordy, and J. Dingel. Mutation operators for concur-
rent Java (J2SE 5.0). In Proc. of the 2nd Work. on Mutation Analysis
(Mutation 2006), pages 83�92, Nov. 2006.

[BDLS80] T. A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Theoretical
and empirical studies on using program mutation to test the functional
correctness of programs. In Proc. of the 7th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL '80, pages
220�233, 1980.

[Bec] K. Beck. JUnit. web page: http://www.junit.org/, (last accessed May
18, 2012).

[BHW10] A. Ben-Hur and J. Weston. A user's guide to support vector machines.
Methods in Molecular Biology, 609:223�239, 2010.

[BL97] A.L. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Arti�cial intelligence, 97(1-2):245�271, 1997.

[BL07] J. Bennett and S. Lanning. The Net�ix prize. In Proceedings of KDD
Cup and Workshop, volume 2007, pages 3�6, 2007.

[BOSB10] K.H. Brodersen, C.S. Ong, K.E. Stephan, and J.M. Buhmann. The
balanced accuracy and its posterior distribution. In Proc. of the 2010 20th
Int. Conf. on Pattern Recognition (ICPR '10), pages 3121�3124, 2010.

[BPM04] G.E. Batista, R.C. Prati, and M.C. Monard. A study of the behavior
of several methods for balancing machine learning training data. ACM
SIGKDD Explorations Newsletter, 6(1):20�29, Jun. 2004.

[Bud80] T.A. Budd. Mutation Analysis of Program Test Data. Ph.D. Thesis, Yale
University, 1980.

[BVSF04] R. Barandela, R. Valdovinos, J. Sanchez, and F. Ferri. The imbalanced
training sample problem: Under or over sampling? Structural, Syntactic,

and Statistical Pattern Recognition, pages 806�814, 2004.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented
design. IEEE Trans. on Soft. Eng., 20(6):476�493, Jun 1994.

[CL11] C.C. Chang and C.J. Lin. LIBSVM: A library for support vector ma-
chines. ACM Trans. Intell. Syst. Technol. (TIST), 2:27:1�27:27, May 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

105



[Col] H. Coles. PIT mutation testing. web page: http://pitest.org/, (last
accessed May 18, 2012).

[com] Apache Commons Lang. web page: http://commons.apache.org/lang/,
(last accessed Jun. 11, 2012).

[CV95] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn.,
20(3):273�297, Sept. 1995.

[DLS78] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, 11(4):34�41, Apr.
1978.

[DM96] M.E. Delamaro and J.C. Maldonado. Proteum � a tool for the assessment
of test adequacy for C programs. In Proc. of the Conf. on Performability

in Computing Sys. (PCS'96), number SERC-TR-168-P, pages 79�95, 1996.

[FB99] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., 1999.

[Fen94] N. Fenton. Software measurement: a necessary scienti�c basis. IEEE
Trans. on Soft. Eng., 20(3):199�206, Mar. 1994.

[FP98] N.E. Fenton and S.L. P�eeger. Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, 2nd edition, 1998.

[GE03] I. Guyon and A. Elissee�. An introduction to variable and feature selection.
The J. of Machine Learning Research, 3:1157�1182, 2003.

[GFS05] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Trans.
of Soft. Eng., 31(10):897�910, Oct. 2005.

[GJ08] A. Gupta and P. Jalote. An approach for experimentally evaluating
e�ectiveness and e�ciency of coverage criteria for software testing. Int. J.
Soft. Tools Technology. Transfer (STTT)., 10(2):145�160, Feb. 2008.

[Goo93] P. Goodman. The Practical Implementation of Software Metrics. McGraw-
Hill, 1993.

[Gun98] S.R. Gunn. Support vector machines for classi�cation and regression.
Technical report, University of Southampton, 1998.

[Hal99] M.A. Hall. Correlation-based feature selection for machine learning. PhD
thesis, The University of Waikato, 1999.

[HCL03] C.W. Hsu, C.C. Chang, and C.J. Lin. A practical guide to support vector
classi�cation. Technical report, National Taiwan University, 2003.

106



[Her00] J. Herbst. A machine learning approach to work�ow management. Proc.
of the 11th European Conf. on Machine Learning (ECML '00), pages
183�194, 2000.

[Her03] A. Hertzmann. Machine learning for computer graphics: A manifesto and
tutorial. In Proc. of the 11th Paci�c Conf. on Computer Graphics and
Applications, pages 22�36, 2003.

[HFH+09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten. The WEKA data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10�18, Nov. 2009.

[HS96] B. Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., 1996.

[HWY09] T. Honglei, S. Wei, and Z. Yanan. The research on software metrics
and software complexity metrics. In Proc. of Int. Forum on Computer
Science-Technology and Applications (IFCSTA '09), pages 131�136, Dec.
2009.

[Ino12] L.M.M.L. Inozemtseva. Predicting test suite e�ectiveness for Java pro-
grams. Master's thesis, University of Waterloo, 2012.

[Jap00] N. Japkowicz. The class imbalance problem: Signi�cance and strategies.
In Proc. of the 2000 Int. Conf. on Arti�cial Intelligence (ICAI '00),
volume 1, pages 111�117, 2000.

[JB12] K. Jalbert and J.S. Bradbury. Predicting mutation score using source
code and test suite metrics. In Proc. of the Work. on Realizing Arti�cial

Intelligence Synergies in Soft. Eng. (RAISE 2012), Jun. 2012.

[jga] JGAP � Java genetic algorithms and genetic programming package. web
page: http://jgap.sourceforge.net/, (last accessed Jun. 11, 2012).

[JH08] Y. Jia and M. Harman. MILU: A customizable, runtime-optimized higher
order mutation testing tool for the full C language. In Testing: Academic
& Industrial Conf. � Practice and Research Techniques (TAIC PART
2008), pages 94�98, 2008.

[JH11] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Trans. on Soft. Eng., 37(5):649�678, Sep.�Oct.
2011.

[JKP94] G.H. John, R. Kohavi, and K. P�eger. Irrelevant features and the subset
selection problem. In Proc. of the 11th Int. Conf. on Machine Learning,
volume 129, pages 121�129, 1994.

107



[Joa99] T. Joachims. Advances in kernel methods. chapter Making large-scale
support vector machine learning practical, pages 169�184. 1999.

[joda] Joda-Primitives. web page: http://joda-primitives.sourceforge.
net/, (last accessed Jun. 11, 2012).

[jodb] Joda-Time. web page: http://joda-time.sourceforge.net/, (last ac-
cessed Jun. 11, 2012).

[jso] jsoup. web page: http://jsoup.org/, (last accessed Jun. 11, 2012).

[Jum] Jumble. web page: http://jumble.sourceforge.net/, (last accessed
May 18, 2012).

[Kan02] S.H. Kan. Metrics and Models in Software Quality Engineering. Addison-
Wesley Longman Publishing Co., Inc., 2nd edition, 2002.

[KJ97] R. Kohavi and G.H. John. Wrappers for feature subset selection. Arti�cial
intelligence, 97(1-2):273�324, 1997.

[KL05] A.G. Koru and H. Liu. Building e�ective defect-prediction models in
practice. IEEE Soft., 22(6):23�29, Nov.�Dec. 2005.

[KM09] B. Kitchenham and E. Mendes. Why comparative e�ort prediction studies
may be invalid. In Proc. of the 5th Int. Conf. on Predictor Models in Soft.
Eng. (PROMISE '09), pages 4:1�4:5, 2009.

[KO91] K.N. King and A.J. O�utt. A Fortran language system for mutation-based
software testing. Software: Practice and Experience, 21(7):685�718, 1991.

[Koh95] R. Kohavi. A study of cross-validation and bootstrap for accuracy es-
timation and model selection. In Proc. of the 14th Int. Joint Conf. on
Arti�cial Intelligence (IJCAI '95), pages 1137�1143, 1995.

[Kon01] I. Kononenko. Machine learning for medical diagnosis: history, state of
the art and perspective. Arti�cial Intelligence in medicine, 23(1):89�109,
2001.

[KR92] K. Kira and L.A. Rendell. The feature selection problem: Traditional
methods and a new algorithm. In Proceedings of the 10th National Conf.

on Arti�cial Intelligence (AAAI '92), pages 129�129, 1992.

[log] Logback. web page: http://logback.qos.ch/, (last accessed Jun. 11,
2012).

[McC76] T.J. McCabe. A complexity measure. IEEE Trans. on Soft. Eng.,
2(4):308�320, Dec. 1976.

108



[Met] Eclipse Metrics plugin. web page: http://metrics2.sourceforge.net/,
(last accessed Mar. 1, 2012).

[MKO02] Y.S. Ma, Y.R Kwon, and J. O�utt. Inter-class mutation operators for
Java. In Proc. of the 13th Int. Symp. on Soft. Reliability Eng. (ISSRE
2002), pages 352�363, 2002.

[MKPS00] S. Muthanna, Kontogiannis K., K. Ponnambalam, and B. Stacey. A
maintainability model for industrial software systems using design level
metrics. In Proc. of the 7th Working Conf. on Reverse Eng. (WCRE
2000), pages 248�256, 2000.

[MO05a] Y.S. Ma and J. O�utt. Description of class mutation mutation operators
for Java. web page: http://cs.gmu.edu/~offutt/mujava/mutopsClass.
pdf, (last accessed Jun. 11, 2012), Nov. 2005.

[MO05b] Y.S. Ma and J. O�utt. Description of method-level mutation operators for
Java. web page: http://cs.gmu.edu/~offutt/mujava/mutopsMethod.
pdf, (last accessed Jun. 11, 2012), Nov. 2005.

[MOK05] Y.S. Ma, J. O�utt, and Y.R. Kwon. MuJava: an automated class mutation
system. Software Testing, Veri�cation and Reliability, 15(2):97�133, 2005.

[Moo] I. Moore. Jester. web page: http://jester.sourceforge.net/, (last
accessed May 18, 2012).

[MR10] L. Madeyski and N. Radyk. Judy � a mutation testing tool for Java. IET
Software, 4(1):32�42, Feb. 2010.

[NA09] A.S. Namin and J.H. Andrews. The in�uence of size and coverage on test
suite e�ectiveness. In Proc. of the 18th Int. Symposium on Soft. Testing
and Analysis (ISSTA '09), pages 57�68, 2009.

[NBP08] G.H. Nguyen, A. Bouzerdoum, and S.L. Phung. E�cient supervised
learning with reduced training exemplars. In IEEE 2008 Int. Joint Conf.

on Neural Networks (IJCNN '08), pages 2981�2987, Jun. 2008.

[NBZ06] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component
failures. In Proceedings of the 28th international conference on Software
engineering (ICSE '06), pages 452�461, 2006.

[NK11] A.S. Namin and S. Kakarla. The use of mutation in testing experiments
and its sensitivity to external threats. In Proc. of the 2011 Int. Symposium
on Soft. Testing and Analysis (ISSTA '11), pages 342�352, 2011.

109



[NWO+05] N. Nagappan, L. Williams, J. Osborne, M. Vouk, and P. Abrahamsson.
Providing test quality feedback using static source code and automatic test
suite metrics. In Proceedings of the 16th IEEE International Symposium

on Software Reliability Engineering (ISSRE '05), pages 85�94, 2005.

[NWVO05] N. Nagappan, L. Williams, M. Vouk, and J. Osborne. Early estimation of
software quality using in-process testing metrics: a controlled case study.
In Proceedings of the third workshop on Software quality, pages 1�7, 2005.

[OAL06] J. O�utt, P. Ammann, and L. Liu. Mutation testing implements grammar-
based testing. In Proc. of the 2nd Work. on Mutation Analysis (Mutation
2006), page 12, Nov. 2006.

[OC94] A.J. O�utt and W.M. Craft. Using compiler optimization techniques to
detect equivalent mutants. Software Testing, Veri�cation and Reliability,
4(3):131�154, 1994.

[O�92] A.J. O�utt. Investigations of the software testing coupling e�ect. ACM
Trans. on Soft. Eng. and Methodology (TOSEM), 1(1):5�20, Jan. 1992.

[OLP08] J.D. Olden, J.J. Lawler, and N.L.R. Po�. Machine learning methods
without tears: a primer for ecologists. The Quarterly review of biology,
83(2):171�193, 2008.

[OLR+96] A.J. O�utt, A. Lee, G. Rothermel, R.H. Untch, and C. Zapf. An experi-
mental determination of su�cient mutant operators. ACM Trans. Soft.

Eng. Methodol., 5(2):99�118, Apr. 1996.

[OMK04] A.J. O�utt, Y.S. Ma, and Y.R. Kwon. An experimental mutation system
for Java. ACM SIGSOFT Soft. Eng. Notes, 29(5):1�4, Sep. 2004.

[ope] OpenFAST. web page: http://www.openfast.org/, (last accessed Jun.
11, 2012).

[OU01] A.J. O�utt and R.H. Untch. Mutation 2000: uniting the orthogonal. In
Mutation testing for the new century, pages 34�44, 2001.

[PJO99] F. Provost, D. Jensen, and T. Oates. E�cient progressive sampling. In
Proc. of the 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining (KDD '99), pages 23�32, 1999.

[PO10] U. Praphamontripong and J. O�utt. Applying mutation testing to web
applications. In Proc. of the 2010 3rd Int. Conf. on Soft. Testing, Veri�-

cation, and Validation Work. (ICSTW '10), pages 132�141, 2010.

110



[PSVG+02] K. Pelckmans, J.A.K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas,
B. Hamers, B. De Moor, and J. Vandewalle. LS-SVMlab: a MATLAB/C
toolbox for least squares support vector machines. Technical Report 02-44,
ESAT-SISTA; K.U. Leuven, 2002.

[Res02] Research Triangle Institute. The economic impacts of inadequate in-
frastructure for software testing. planning report 02-3. Technical report,
National Institute of Standards and Technology, United States, May 2002.

[Rou] V. Roubtsov. EMMA: A free Java code coverage tool. web page: http:
//emma.sourceforge.net/, (last accessed Mar. 1, 2012).

[SDZ09] D. Schuler, V. Dallmeier, and A. Zeller. E�cient mutation testing by
checking invariant violations. In Proc. of the 18th Int. Symposium on
Soft. Testing and Analysis (ISSTA '09), pages 69�80, Jul. 2009.

[SJS06] M. Sokolova, N. Japkowicz, and S. Szpakowicz. Beyond accuracy, f-score
and roc: a family of discriminant measures for performance evaluation.
AI 2006: Advances in Arti�cial Intelligence, pages 1015�1021, 2006.

[SRD12] A. Shaik, C.R.K. Reddy, and A. Damodaram. Object oriented software
metrics and quality assessment: Current state of the art. Int. J. of
Computer Applications, 37(11):6�15, Jan. 2012.

[SRH+10] S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien,
F. Bona, A. Binder, C. Gehl, and V. Franc. The SHOGUN machine
learning toolbox. J. of Machine Learning Research, 99:1799�1802, Aug.
2010.

[SS08] P. Singh and H. Singh. DynaMetrics: a runtime metric-based analysis
tool for object-oriented software systems. SIGSOFT Soft. Eng. Notes,
33(6):1�6, Nov. 2008.

[SV99] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine
classi�ers. Neural processing letters, 9(3):293�300, 1999.

[SZ08a] H. Shahriar and M. Zulkernine. MUSIC: Mutation-based SQL injection
vulnerability checking. In Proc. of the 2008 The 8th Int. Conf. on Quality
Soft., pages 77�86, Aug. 2008.

[SZ08b] H. Shahriar and M. Zulkernine. Mutation-based testing of bu�er over�ow
vulnerabilities. In Proc. of the 2008 32nd Annual IEEE Int. Computer
Soft. and Applications Conf. (COMPSAC '08), pages 979�984, 2008.

[SZ09a] D. Schuler and A. Zeller. Javalanche: E�cient mutation testing for Java.
In Proc. of the the 7th Joint Meeting of the European Soft. Eng. Conf.

111



and the ACM SIGSOFT Symposium on The Foundations of Soft. Eng.
(ESEC/FSE '09), pages 297�298, 2009.

[SZ09b] H. Shahriar and M. Zulkernine. MUTEC: Mutation-based testing of cross
site scripting. In Proc. of the 2009 ICSE Work. on Soft. Eng. for Secure

Systems (IWSESS '09), pages 47�53, 2009.

[SZ10] D. Schuler and A. Zeller. (Un-)covering equivalent mutants. In Proc. of the
3rd Int. Conf. on Soft. Testing, Veri�cation and Validation (ICST '10),
pages 45�54, Apr. 2010.

[UOH93] R.H. Untch, A.J. O�utt, and M.J. Harrold. Mutation analysis using
mutant schemata. ACM SIGSOFT Soft. Eng. Notes, 18(3):139�148, 1993.

[WDC10] W.E. Wong, V. Debroy, and B. Choi. A family of code coverage-based
heuristics for e�ective fault localization. J. Syst. Softw., 83(2):188�208,
Feb. 2010.

[Wey93] E.J. Weyuker. Can we measure software testing e�ectiveness? In Proc.

of the 1st Int. Soft. Metrics Symposium, pages 100�107, 1993.

[WFH11] I.H. Witten, E. Frank, and M.A. Hall. Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann Publishers Inc., 3rd
edition, 2011.

[WKP10] H.K. Wright, M. Kim, and D.E. Perry. Validity concerns in software
engineering research. In Proc. of the FSE/SDP Work. on Future of Soft.
Eng. research (FoSER '10), pages 411�414, 2010.

[WNC05] J. Wang, P. Neskovic, and L.N. Cooper. Training data selection for
support vector machines. In Proc. of the 1st Int. Conf. on Advances in

Natural Computation - Volume Part I (ICNC '05), pages 554�564, 2005.

[WRH+00] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wess-
lén. Experimentation in software engineering: an introduction. Kluwer
Academic Publishers, 2000.

[ZHM97] H. Zhu, P.A.V. Hall, and J.H.R. May. Software unit test coverage and
adequacy. ACM Computing Surveys (CSUR), 29(4):366�427, Dec. 1997.

112



Appendix A

Mutation Score Distributions

The individual mutation score distributions of class- and method-level source code

units from the test subjects (see Section 4.3.1) are displayed within this appendix.

The collective mutation score distribution of all test subjects is shown and described

in Section 4.3.1. Statistical summary of each test subject's mutation score distribution

is presented in Table A.1 and A.2.
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Figure A.1: Mutation score distribution of classes from barbecue that can be used for
training.
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Figure A.2: Mutation score distribution of methods from barbecue that can be used
for training.
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Figure A.3: Mutation score distribution of classes from commons-lang that can be
used for training.
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Figure A.4: Mutation score distribution of methods from commons-lang that can be
used for training.
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Figure A.5: Mutation score distribution of classes from jgap that can be used for
training.
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Figure A.6: Mutation score distribution of methods from jgap that can be used for
training.
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Figure A.7: Mutation score distribution of classes from joda-primitives that can be
used for training.
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Figure A.8: Mutation score distribution of methods from joda-primitives that can be
used for training.
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Figure A.9: Mutation score distribution of classes from joda-time that can be used for
training.
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Figure A.10: Mutation score distribution of methods from joda-time that can be used
for training.

119



0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

Mutation Score (%)

#
of

C
la
ss
es

Figure A.11: Mutation score distribution of classes from jsoup that can be used for
training.
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Figure A.12: Mutation score distribution of methods from jsoup that can be used for
training.
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Figure A.13: Mutation score distribution of classes from logback-core that can be used
for training.
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Figure A.14: Mutation score distribution of methods from logback-core that can be
used for training.
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Figure A.15: Mutation score distribution of classes from openfast that can be used for
training.
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Figure A.16: Mutation score distribution of methods from openfast that can be used
for training.
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Appendix B

Feature Selection

In Section 5.2 we mentioned the we can reduce the used feature sets using a technique

call feature selection. With feature selection it is possible to minimize the loss

or possibly increase the predictive performance, and reduce cost (with respect to

time and space). This appendix was originally planned for the optimization section

(Section 4.3.4) though we decided to move this section in an appendix as the results

were not signi�cant.

In machine learning one typically gathers as many features as possible to supply

su�cient data such that the learning algorithms can make accurate predictions. The

general problem is to predict the correct category based on a vector, in some cases there

are redundant, irrelevant or detrimental features to the predictive e�orts. With the

right set of features, the prediction performance can improve, or remain the same with

less information required. With a reduced feature load, the actual performance (i.e.,

with respect to computational resources required) will improve. Feature selection makes

it is possible to utilize a subset of the initially de�ned feature set that improve/maintain

the predictive performance while requiring less data [GE03,BL97].
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There are several approaches to feature selection, in particular �lter and wrapper.

Filters assess the quality/merits of features solely from the data alone as a preprocessing

step [JKP94,BL97]. Various algorithms and measures can be used as a �lter (i.e.,

information gain [GE03], correlation [Hal99], FOCUS [AD91], Relief [KR92], etc. . . ).

An alternative to �lters are wrappers, which evaluates the actual performance of

features using the classi�er. Wrappers treat the classi�er as a black-box and assess the

performance using various subsets of features by using the actual predictor [JKP94,

BL97]. Wrappers provide a more accurate and e�ective means in �nding appropriate

features, though ine�cient as the classi�cation process must occur many times using

cross-validation with di�erent features [KJ97].

We have over 3000 vectors (with undersampling in e�ect) with 15 features for the

method-level data set (see Table 3.1). A wrapper approach could be very costly in our

situation, though might prove more e�ective as found by Kohavi and John [KJ97]. For

our research we decided against a wrapper approach due to the high computational

cost involved. As an alternative to a wrapper approach we use Hall's Correlation

Based Feature Selection (CFS) �lter which is based on the follow de�nition: �A good

feature subset is one that contains features highly correlated with (predictive of) the

class, yet uncorrelated with (not predictive of) each other� [Hal99]. We used Hall's

CFS implementation found in the machine learning toolkit WEKA [HFH+09].

To further investigate Hall's �lter we created a correlation matrix of our features

along with the raw mutation score and used category for the source code unit. We

discovered that none of our features are highly correlated with the predicted category.

In the class-level correlation there were only six features (i.e., APAR, ATNBD, ATVG,

NOF, NSC and SPAR) that had a correlation between 0.3 and 0.5 (i.e., moderate

correlation) with the rest being weak or no correlation. In the method-level correlations

ATMLOC was the only feature with a moderate correlations while the rest were weak
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or no correlation. There were a number of features that are highly correlated with

each other (e.g., size and complexity). These �ndings suggest either:

� The selected features are insu�cient in describing the predicted category.

� The di�culty of predicting the mutation score category is a highly complex

process.

We believe that the observed correlations suggest the the prediction of the mutation

score category is di�cult. As mentioned in Section 3.1, there are two source artifacts

involved in determining the mutation score, and our features are both well established

descriptive metrics of these source artifacts.

We used the available data of the all data set (i.e., all the test subjects together)

for both class- and method-level. Ten di�erent undersampled data set of vectors that

contain all our features were apply the CFS �lter to produce an ascending order of

features with respect to their correlation ranking (i.e., how e�ective the feature is with

respect to others). To account for the undersampling we apply the CFS �lter on each

of the ten undersampled sets of data. We then use a simple rank summation to tally

the results (i.e., ascending rank n has a value of n, and so forth), which then allowed

us to create overall ranking of the features across the ten di�erent undersampled data

sets. We then removed the least useful feature one at a time and observed the new

10-fold cross-validation performance of the classi�er using a subset of all the features.

The class-level cross-validation accuracy of the iteratively excluded features is

shown in Figure B.1. We can see an interesting trend from the iterative exclusion of

features, there is variation yet the mean accuracy remains approximately the same for

about 17 iterations. After 17 iterations the cross-validation accuracy drops, which

suggests that it is possible to exclude 17 features and still have approximately the

same mean accuracy as with all the features. With respect to feature selection, an
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Figure B.1: Class-level cross-validation accuracy on the all subject over an iterative
exclusion of features

The last feature not removed is `NOF'.

ideal situation would allow use to use a reduced set of features that actually increase

the cross-validation accuracy (i.e., by removing detrimental features). In our case we

did not see any substantial increase in cross-validation accuracy, though we did not

lower the mean accuracy over 17 iterations of exclusions. Another ideal situation is to

completely remove certain feature sets, thus freeing us from the collection of these

features. We can completely remove the coverage metrics (feature set ) as all those

metrics are excluded through the iterations. We need to keep in mind that CFS is a

�lter that removes features based on correlation with the category yet not with each

other. An excluded feature might not necessarily be a bad feature, it might just be

redundant. In the case of class-level features we can see that STNBD and STVG

are the �rst two features excluded using CFS which makes sense considering both

their correlation with the second last feature excluded (STMLOC ) is above 0.995.
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Figure B.2: Method-level cross-validation accuracy on the all subject over an iterative
exclusion of features

The last feature not removed is `BTOT'.

One interesting note here is that the last three features are each from three di�erent

feature sets (STMLOC belongs to ¯, SMLOC belongs to ® and NOF belongs to

¬), which reinforces that each feature set is crucial to prediction and that the other

features within these sets might be redundant.

The method-level cross-validation accuracy of iteratively excluding features (see

Figure B.2) follows a similar trend to that of the class-level. If we consider the same

approach as in the class-level we could potentially remove the �rst three features,

which maintains the mean accuracy with a lesser amount of features. Unfortunately,

it is not possible to completely remove a feature set with the exclusion of the �rst

three features. Also we can see a similar trend in the order of excluded features that

STVG, STNBD and NOT are removed early on with STMLOC and MLOC (i.e.,

similar to SMLOC from the class-level) being the last ones removed again due to high
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correlation between these features. The last four features for method-level contain

one feature from each feature set (i.e., the applicable ones for method-level, which

excludes ®), which again reinforces the necessity of these feature sets.
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Figure B.3: The time required in seconds for class-level training and predicting using
all features vs. a reduced set of features.
The reduced set of features correspond to the exclusion of the 17 left-most features from Figure B.1.

We were unable to demonstrate any substantial prediction performance gain in

terms of cross-validation accuracy through feature selection, we decided to observe

it from a resource perspective. Using 100 executions Figure B.3 and B.4 show the

time required for training and predicting. We measured the time taken of training

and predicting using both the reduced set of features as well as all the features to

understand the performance gains with respect to time. We avoided measuring the

time required with cross-validation as there are many more factors involved (i.e., the

easy script, scales and grid searches using the data). With the training process we

utilized the defaults that LIBSVM suggests for the cost (i.e., 1) and gamma (i.e.,
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Figure B.4: The time required in seconds for method-level training and predicting
using all features vs. a reduced set of features.
The reduced set of features correspond to the exclusion of the 3 left-most features from Figure B.2.

1/<number_of_features>) parameters. Regardless of the parameters chosen the

relative ratio between the two sets of features will remain the same. We found that

the reduced set of features reduces the training and prediction time for class-level

by 25.1% and method-level by 7.9%. As the reduced set in class-level excluded more

features than the method-level there is a great reduction in time taken for training

and prediction.
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