
Identification and Annotation of Concurrency Design

Patterns in Java Source Code using Static Analysis

by

Martin Mwebesa

A thesis submitted to the

Faculty of Science

in conformity with the requirements for

the degree of Master of Science

in Computer Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

December 2011

Copyright © Martin Mwebesa, 2011

Abstract

Concurrent software is quickly becoming a very important facet in Software Engineering due

to numerous advantages, one of which is increased processing speed. Despite it’s importance,

concurrent software is fraught with very difficult to detect bugs, for example deadlocks and

data races. Concurrency design patterns were created to offer successfully tried and tested

means to design and develop concurrent software to, amongst other things, minimize the

occurrence of these hard to detect bugs. In this thesis we discuss our novel static analysis

technique to detect these concurrency design patterns in Java source code and identify them

using commented Java annotations. Using our technique the commented Java annotations

are inserted above Java constructs that are not only part of the Java source code but also

make up the various roles that comprise the concurrency design pattern. The identifying

of the concurrency design patterns in the Java source code can aid in their maintenance

later on, by matching the inserted Java annotations to the various Java constructs they are

annotating. Maintaining the concurrency design patterns within the Java source code in

effect aids in maintaining the Java source code error free.

i

Acknowledgments

I would like to thank the University of Ontario Institute of Technology (UOIT) for giving

me the opportunity to pursue my Master of Science in Computer Science and funding most

of this education for me.

I would like to thank my Examining Committee for taking the time to read my thesis,

questioning me fairly on the material within and giving me valuable feedback.

I would like to thank Dr. Jeremy S. Bradbury, my advisor and supervisor, for intro-

ducing me to the wonderful and exciting world of scientific research, for challenging me, for

mentoring me through my research and those challenges, for introducing me to the realm

of concurrent software and for also introducing me to the TXL programming language - of

which I am now proficient.

I would like to thank my colleagues in the SQR Group for being part of this journey

with me, lending me their ears and also writing some test programs for me.

I would like to thank my very close friend, Dr. Cephas Masikini, for encouraging me

to pursue Graduate Studies in my chosen field, Computer Science, and for also giving me

encouragement when the going got rough.

I would finally, but by no means least, like to thank my family, Uncle Steven and Mama,

for encouraging me along the way and giving me the foundation to pursue rigorous study.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables vi

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Hypothesis and Problem Definition . 3
1.3 Thesis Organization . 4

2 Background 5
2.1 Overview . 5
2.2 Concurrency Design Patterns . 5

2.2.1 Overview of Design Patterns . 5
2.2.2 Single Threaded Execution (Critical Section) 7
2.2.3 Lock Object . 8
2.2.4 Guarded Suspension . 10
2.2.5 Balking . 12
2.2.6 Scheduler . 13
2.2.7 Read/Write Lock . 17
2.2.8 Producer-Consumer . 20
2.2.9 Two-Phase Termination . 22

2.3 Existing Design Pattern Detection Techniques using Java Annotations . . . 25
2.3.1 Java Source Code Annotations . 25
2.3.2 Sabo and Poruban Approach [SP09] 26
2.3.3 Meffert Approach [Mef06] . 28
2.3.4 He, Li and He Approach [HLH06] . 30
2.3.5 Rasool, Philippow and Mader Approach [RPM08] 31

iii

2.4 Summary . 32

3 Concurrency Design Pattern Detection 34
3.1 Overview . 34
3.2 Background: TXL . 36

3.2.1 Some important Constructs in the TXL Language 37
3.3 Approach . 40

3.3.1 Using TXL for Design Pattern Detection 40
3.3.2 Identification of Concurrency Design Pattern Roles 43
3.3.3 Creation of the TXL rules . 44
3.3.4 Refinement of the TXL Rules . 55

3.4 Summary . 59

4 Annotation of Design Patterns 60
4.1 Overview . 60
4.2 Annotation Specifications . 61
4.3 Implementing Commented Annotations using TXL 64

4.3.1 TXL Rules adding Commented Java Annotations 64
4.4 Summary . 75

5 Evaluation 76
5.1 Overview . 76
5.2 Evaluation Methodology . 77
5.3 Results . 79

5.3.1 Effectiveness in Identifying the Concurrency Design Patterns 79
5.3.2 Performance Rates of the TXL Programs 92

5.4 Threats to Validity . 94
5.5 Summary . 95

6 Conclusion and Future Work 96
6.1 Overview . 96
6.2 Contributions . 98
6.3 Limitations . 99
6.4 Future Work . 101

6.4.1 Identification of additional concurrency design patterns 101
6.4.2 Uncomment and use the Java Annotations after JSR 308 101
6.4.3 Maintenance of Concurrency Design Patterns in Java source code . . 101

6.5 Conclusion . 102

Bibliography 104

iv

A Summary of Concurrency Design Pattern Roles 106
A.1 Single Threaded Execution Design Pattern 106
A.2 Lock Object Design Pattern . 107
A.3 Guarded Suspension Design Pattern . 107
A.4 Balking Design Pattern . 108
A.5 Scheduler Design Pattern . 109
A.6 Read/Write Lock Design Pattern . 111
A.7 Producer-Consumer Design Pattern . 113
A.8 Two-Phase Termination Design Pattern . 114

B Concurrency Design Pattern Annotation Specifications 115
B.1 Single Threaded Execution Design Pattern 115
B.2 Lock Object Design Pattern . 116
B.3 Guarded Suspension Design Pattern . 116
B.4 Balking Design Pattern . 117
B.5 Scheduler Design Pattern . 118
B.6 Read/Write Lock Design Pattern . 120
B.7 Producer-Consumer Design Pattern . 122
B.8 Two-Phase Termination Design Pattern . 123

v

List of Tables

4.1 Guarded Suspension Design Pattern Annotation Specifications 61

5.1 List of Java source code examples used for Evaluation 78

5.2 Single Threaded Execution Design Pattern Success Rates 80

5.3 Balking Design Pattern Success Rates . 82

5.4 Guarded Suspension Design Pattern Success Rates 83

5.5 Lock Object Design Pattern Success Rates 85

5.6 Producer Consumer Design Pattern Success Rates 86

5.7 Read/Write Lock Design Pattern Success Rates 88

5.8 Scheduler Design Pattern Success Rates . 89

5.9 Two Phase Termination Design Pattern Success Rates 91

5.10 Performance Rates of Concurrency Design Pattern detection programs . . . 93

A.1 Single Threaded Execution Design Pattern Roles 106

A.2 Lock Object Design Pattern Roles . 107

A.3 Guarded Suspension Design Pattern Roles 107

A.4 Balking Design Pattern Roles . 108

A.5 Scheduler Design Pattern Roles . 109

A.6 Scheduler Design Pattern Roles Continued 110

A.7 Read/Write Lock Design Pattern Roles . 111

vi

A.8 Read/Write Lock Design Pattern Roles Continued 112

A.9 Producer-Consumer Design Pattern Roles 113

A.10 Two-Phase Termination Design Pattern Roles 114

B.1 Single Threaded Execution Design Pattern Annotations 115

B.2 Lock Object Design Pattern Annotations 116

B.3 Guarded Suspension Design Pattern Annotations 116

B.4 Balking Design Pattern Annotations . 117

B.5 Scheduler Design Pattern Annotations . 118

B.6 Scheduler Design Pattern Annotations Continued 119

B.7 Read/Write Lock Design Pattern Annotations 120

B.8 Read/Write Lock Design Pattern Annotations Continued 121

B.9 Producer-Consumer Design Pattern Annotations 122

B.10 Producer-Consumer Design Pattern Annotations Continued 123

B.11 Two-Phase Termination Design Pattern Annotations 123

vii

List of Figures

2.1 Illustration of Single Threaded Execution pattern 7

2.2 Illustration of Lock Object pattern [Gra02] 9

2.3 Illustration of Guarded Suspension design pattern [Gra02] 11

2.4 Illustration of Balking pattern [Gra02] . 12

2.5 Illustration of the Scheduler object of the Scheduler pattern [Gra02] 15

2.6 Illustration of the Request object of the Scheduler pattern [Gra02] 16

2.7 Illustration of the Schedule Ordering interface of the Scheduler pattern [Gra02] 16

2.8 Illustration of the Processor object of the Scheduler pattern [Gra02] 16

2.9 Illustration of the ReadLock() method of the Read/Write Lock pattern [Gra02] 18

2.10 Illustration of the Writelock() method of the Read/Write Lock pattern [Gra02] 19

2.11 Illustration of the done() method of the Read/Write Lock pattern [Gra02] . 19

2.12 Illustration of the Producer object of the Producer-Consumer pattern [Gra02] 20

2.13 Illustration of the Queue object of the Producer-Consumer [Gra02] 21

2.14 Illustration of the Consumer object of the Producer-Consumer pattern [Gra02] 21

2.15 Illustration of the Two-Phase Termination pattern [Gra02] 24

3.1 Parsing of the Java source code by TXL . 35

3.2 Illustration of the three phases of TXL [CCH07] 37

3.3 Illustration of TXL define and redefine constructs 38

3.4 Illustration of a TXL function [CCH07] . 39

viii

3.5 Illustration of a TXL rule [CCH07] . 39

3.6 Illustration of our Concurrency Design Pattern Detection Technique 41

3.7 Illustration of defining new construct, labelM 42

3.8 Illustration of class declaration redefine . 42

3.9 Illustration of Guarded Suspension design pattern roles in Java source code 44

3.10 Illustration of the main function . 46

3.11 Illustration of the findGuardedSuspensionPattern rule 47

3.12 Illustration of the findAllNumberVars rule 48

3.13 Illustration of the find1stSynchMethod1 rule 49

3.14 Illustration of the hasNotifyOrNotifyAll rule 50

3.15 Illustration of the find2ndSynchMethod1 rule 51

3.16 Illustration of the isWhileLpWait rule . 51

3.17 Illustration of the completStats function . 53

3.18 Illustration of matching functions . 54

3.19 Illustration of the printPatternNotFound function 54

3.20 Illustration of the printOutput function . 55

3.21 Illustration of the find1stSynchMethod2 rule 56

3.22 Illustration of the find2ndSynchMethod2 rule 57

3.23 Illustration of the isDoWhileLpWait rule . 58

4.1 Illustration of the Guarded Suspension design pattern before Annotations . 62

4.2 Illustration of the Guarded Suspension design pattern after Annotations . . 63

4.3 Illustration of Transforming findGuardedSuspensionPattern rule 65

4.4 Illustration of Transforming find1stSynchMethod1 rule 67

4.5 Illustration of Transforming hasNotifyOrNotifyAll rule 69

4.6 Illustration of Transforming hasNotifyOrNotifyAll rule Continued 70

4.7 Illustration of Transforming find2ndSynchMethod1 rule 71

ix

4.8 Illustration of Transforming isWhileLpWait rule 73

4.9 Illustration of Transforming isDoWhileLpWait rule 74

5.1 Illustration of our Concurrency Design Pattern Detection Results Summary 92

x

1

Chapter 1

Introduction

1.1 Motivation

In Software Engineering a design pattern can be defined as follows:

“A design pattern systematically names, motivates, and explains a general design that

addresses a recurring design problem in object-oriented systems. It describes the problem,

the solution, when to apply the solution and its consequences. It also gives implementation

hints and examples. The solution is a general arrangement of objects and classes that solve

the problem. The solution is customized and implemented to solve the problem in a particular

context.” [GHJV95]

In other words design patterns can be defined as templates to resolve common software

engineering problems. There are various advantages to using design patterns, including the

following [GHJV95]:

� Developers benefiting from successfully tried and used designs and architecture.

� Enables reusability of a system by allowing the choice of design alternatives that avoid

the comprising of reusability.

� Enables better documentation and maintenance of an existing system by providing

1.1. MOTIVATION 2

explicit specification of class and object interactions and their underlying intent.

Concurrent software is software where its components do not necessarily run, one after

the other as is the case in traditional sequential software. Instead in concurrent software,

its various components will run on separate threads hence causing them to complete their

processing at different times, non-sequentially. Leveraged properly concurrent software is

faster and more versatile than traditional sequential software especially now, in an age

where we have multi-core processors that can run numerous threads at the same time.

With the possible increase in processing speed that can occur with the use of concur-

rency, comes a heavy price of “bugs” that are extremely hard to find. With traditional

sequential software you were assured of processes within the software application working

sequential, one after the other hence easing the process of finding errors. With concur-

rent software, it can be difficult to isolate a bug when one is not sure in what order the

application threads are running.

Basically, despite the potential power and versatility possible with concurrent software

there is difficulty in testing the software for errors as well as more potential to mistakenly

inject a concurrency bug. Some common concurrency related bugs include data races and

deadlocks which will be elaborated on later in Section 2.2.2. Concurrent software design

patterns are design patterns specifically created to alleviate many of these issues starting

with the design phase of the concurrent software development.

The increasing importance of concurrent software and the role of design patterns in

solving many Software Engineering problems is a major motivating factor for my pursuit

of this thesis. These same design patterns are not only beneficial in the design phase

of concurrent software’s life cycle but can actually be utilized in the maintenance and

quality assurance phases. Unfortunately, the use of concurrency design patterns to aid in

the maintenance of concurrent software has been in general under researched. As will be

discussed in Section 2.3 there has been work on the role of design patterns in software

1.2. HYPOTHESIS AND PROBLEM DEFINITION 3

maintenance [Mef06, SP09] but this has been centered on the traditional object oriented

patterns, specifically creational, structural and behavioral design patterns.

1.2 Hypothesis and Problem Definition

One major problem encountered in the use of design patterns during the implementation

and maintenance of software is that they can be unintentionally and very easily broken.

Sabo, et al. describe the reasons for this as follows:

“It often happens that design patterns can not be identified in source code because the

conceptual entity of the pattern at the design level is scattered over different parts of an ob-

ject or even multiple objects on the implementation level. Intentions of design pattern and

system specific intentions are superimposed in implementation and without explicitly distin-

guishing between sections implementing each of them, it becomes very difficult to identify

the constructs constituting the pattern later. Due to the inability to identify individual parts

of a pattern, they may be modified inadvertently which may result in breaking the pattern

and losing the benefits gained by its application in the system.” [SP09]

Keeping this problem in mind, we propose a technique using static analysis with TXL, to

identify concurrency design patterns in Java source code and annotate that source code with

details regarding the design patterns identified. Java source code annotations are described

in Section 2.3.1 of this thesis. These annotations can aid in the maintenance of the design

patterns within the Java source code and hence resolve the problem described above. This

can be achieved by matching these annotations to the source code they are annotating. If

there is a match between the Java annotations and the source code being annotated then

the design pattern is not broken, however if the Java annotation and Java source code no

longer match then the design pattern has been broken. Our identification and annotation

technique using TXL will be elaborated on in Chapters 3 and 4 of this thesis.

1.3. THESIS ORGANIZATION 4

1.3 Thesis Organization

The rest of this thesis will be organized into the following 5 Chapters:

� Chapter 2: A background of the 8 concurrency design patterns we will be identifying

and an overview of existing techniques used in detecting design patterns in general.

� Chapter 3: A discussion of our detection technique. This will involve a background

into TXL, a pattern based source transformation language that we are using to detect

the design patterns. We will also be discussing how we created a detection tool using

TXL rules and our refinement of these rules based on a preliminary study.

� Chapter 4: A discussion of our Java annotation technique detailing how we imple-

mented these annotations using TXL.

� Chapter 5: An overview of the evaluation methodology and evaluation results of

our technique. Our empirical evaluation is used to verify that our identification and

annotation approach can be the proven solution to Section 1.2

� Chapter 6: This will be the conclusion to the thesis where we will summarize the

research contributions, limitations of our technique and possible future work overview.

5

Chapter 2

Background

2.1 Overview

In this chapter we will discuss concurrency design patterns, elaborating on the 8 that we

will be detecting and identifying using our technique. We will then discuss Java annotations

and give an insight into 4 techniques that use Java annotations to detect and identify design

patterns within Java source code. These 4 techniques differ from our technique in that they

target the creational, structural and behavioral design patterns whilst our technique targets

concurrency design patterns.

2.2 Concurrency Design Patterns

In this section we will define concurrency design patterns and discuss the 8 concurrency

design patterns we targeted in our research.

2.2.1 Overview of Design Patterns

In general concurrency design patterns address mainly 2 kinds of problems encountered in

concurrency [Gra02]:

2.2. CONCURRENCY DESIGN PATTERNS 6

1. Accessing of shared resources: Ensuring that the accessing of shared resources occurs

one at a time because in concurrent processes there is a possibility that threads can

interfere with each other when accessing a resource at the same time. This could

cause a deadlock or a data race, both of which will be elaborated on in Section 2.2.2.

2. Controlling the sequencing of operations: Determining in what order shared resources

will be accessed.

In the following subsections we will be discussing the following 8 concurrency design

patterns [Gra02]:

1. Single Threaded Execution (also called Critical Section): This pattern im-

plements guarded methods, which is done in Java using the synchronized keyword.

2. Lock Object: This pattern enables a thread to have exclusive access to multiple

objects.

3. Guarded Suspension: This pattern allows for a process to wait until specific pre-

conditions have been met before processing.

4. Balking: This pattern allows for a thread to stop processing completely if a condition

has not been met.

5. Scheduler: This pattern allows for the ordering of threads in concurrent software.

6. Read/Write Lock: This pattern allows for concurrent reads and exclusive writes to

operations in a concurrent software application.

7. Producer-Consumer: This pattern allows for coordinated sequential producing and

consuming of objects in a concurrent software application.

8. Two-Phase Termination: This pattern allows for the orderly shutdown of a thread

or process in a concurrent software application.

2.2. CONCURRENCY DESIGN PATTERNS 7

public synchronized void s e t (Datum d) { datum = d ; }

Figure 2.1: Illustration of Single Threaded Execution pattern

Other concurrency design patterns exist, including: Double Buffering, Asynchronous

Processing and Future, but we will be focusing on just the above patterns as they are

sufficient in supporting our research hypothesis.

2.2.2 Single Threaded Execution (Critical Section)

Of the 8 concurrency design patterns we will be detecting, the Single Threaded Execution

pattern is the most fundamental as it resolves issues related to shared resources by ensuring

that only one thread accesses a resource at a time. This is the most common synchronization

scenario and hence the importance placed on this design pattern. This pattern is used by

most of the other concurrency design patterns.

The Single Threaded Execution design pattern helps prevent issues (incorrect results)

occurring from multiple threads accessing a specific resource (object) at the same time

through concurrent calls to a method. This issue is a data race [Gra02].

This prevention is done by implementing guarded methods. In Java this basically means

declaring these methods that can be called concurrently but may lead to incorrect results,

as synchronized. Figure 2.1 illustrates this. Introduction of deadlocks is a potential issue

in implementing this pattern. A deadlock occurs when two threads each have exclusive

access to a resource and each thread is waiting for the other to release the resource before

continuing [Gra02]. They could potentially wait forever causing the operation to fail to

complete.

2.2. CONCURRENCY DESIGN PATTERNS 8

2.2.3 Lock Object

This design pattern is a refinement of the “Single Threaded Execution” design pattern and

it enables a single thread to have exclusive access to multiple objects. To avoid a thread

having to obtain a lock on every single object it needs and thus consuming lots of overhead,

the solution offered by this design pattern is to have threads acquire a synchronization lock

on an object created for the sole purpose of being the subject of locks, before continuing

with any operations. This object is referred to as a Lock Object hence the name of the

pattern. Figure 2.2 illustrates the use of the Lock Object pattern.

2.2. CONCURRENCY DESIGN PATTERNS 9

import java . u t i l . ArrayList ;
public abstract class AbstractGameObject {

private stat ic f ina l Object lockObject = new Object () ;
// . . .
// . . .
private boolean glowing ; //True i f t h i s o b j e c t i s g lowing .
// . . .
// . . .
public stat ic f ina l Object getLockObject () {

return l ockObject ;
}
// . . .
// . . .
public boolean i sGlowing () {

return glowing ;
}

public void setGlowing (boolean newValue) {
glowing = newValue ;

}
}

class GameCharacter extends AbstractGameObject {
// . . .
private ArrayList<E> myWeapons = new ArrayList () ;

public void dropAllWeapons () {
synchronized (getLockObject ()) {

for (int i = myWeapons . s i z e () −1; i>=0; i−−){
((Weapons)myWeapons . get (i)) . setGlowing (true) ;

}
}

}
// . . .

}

Figure 2.2: Illustration of Lock Object pattern [Gra02]

2.2. CONCURRENCY DESIGN PATTERNS 10

There are various ways that a Lock Object can be incorporated into a program. One

common way this is implemented is by creating a static method in the class e.g. getLockOb-

ject() [Gra02] that returns a lock (the sole lock). Subclasses of this class call this method to

get the Lock Object to synchronize operations in the program.

Using this pattern one can ensure that only one thread at a time is accessing a set of

objects without too much performance overhead and code complexity. A shortcoming of

this pattern is that an inefficient use of resources could occur when using the Lock Object.

This occurs because using the Lock Object results in an operation getting exclusive access

to all objects, some of which it may not actually be using but may be needed by other

operations. These other operations could have otherwise executed concurrently but are

now forced to wait to get access to the Lock Object before they proceed.

2.2.4 Guarded Suspension

The Guarded Suspension design pattern is used in a situation where a pre-condition exists

that prevents a method from doing what it is supposed to do. This pattern allows for the

execution of the method to be suspended until those conditions have been met.

A good illustration of when the Guarded Suspension design pattern could be useful is

in the push and pull method of a queue (see Figure 2.3) [Gra02]. The push() method adds

objects to the queue while the pull() method removes objects from the queue.

Both methods are synchronized using the synchronized construct so that multiple threads

can safely make concurrent calls to them. Because both methods are synchronized a problem

could occur when the queue is empty and a call is made to the pull() method. The pull()

method waits for the push() method to provide it with an object to pull, but because they

are synchronized, the push() method cannot occur until the pull() method returns. The pull()

method will never return until the push() method executes. This condition is an example

of a deadlock as described in Section 2.2.2, one of the most common concurrency related

bugs. The solution here would be to add an IsEmpty() precondition which when true would

2.2. CONCURRENCY DESIGN PATTERNS 11

class Queue{
public synchronized pu l l () {

while (isEmpty ()) { // the precond i t i on
wait () ;

}
// . . .
// . . .

}
public synchronized void push () {

// . . .
no t i f y () ;

}
}

Figure 2.3: Illustration of Guarded Suspension design pattern [Gra02]

cause the execution of the pull() method to be suspended as long as the queue is empty.

This solution is the classical implementation of the Guarded Suspension design pattern.

The use of wait() and notify() methods which all classes in Java inherit from the Object

class are used in the implementation of this pattern. The use of notifyAll() notifies all waiting

threads unlike notify() which just selects one waiting thread to notify.

The wait() method when called causes a thread to release the synchronization lock it holds

on the object in which it is called. The thread that calls the wait() method is suspended or

put on hold until the thread is notified that it can continue through a notify() or notifyAll()

method call. At that point the thread attempts to recapture the lock and when it does the

wait() returns, hence allowing the method from which it was called to proceed.

2.2. CONCURRENCY DESIGN PATTERNS 12

public class Flusher {
private Boolean f l u sh InProg r e s s = fa l se ;
public void f l u s h () {

synchronized (this) {
// ensures only 1 c a l l w i l l proceed normal ly and
// concurrent c a l l s w i l l b a l k .

i f (f l u sh InProg r e s s)
return ;

f l u sh InProg r e s s = true ;
}
// . . . / / r e s t o f the code to s t a r t the f l u s h goes here .

}
void f lushCompleted () {

f l u sh InProg r e s s = fa l se ;
}
}

Figure 2.4: Illustration of Balking pattern [Gra02]

The Guarded Suspension design pattern is related to the Balking and Two Phase Ter-

mination design patterns discussed further below.

2.2.5 Balking

The Balking design pattern allows for an object’s method or methods to return without

completing if the object is not in an appropriate state to execute the method.

A good example of the design pattern is an automatic toilet flusher [Gra02]. This kind

of flusher usually has 2 ways of flushing, one being a light sensor and the other being a

manual flusher. If both calls happen concurrently there would be various courses of action:

1. Start a new flush immediately.

2. Wait until the current flush completes and then start a new flush.

3. Do nothing.

2.2. CONCURRENCY DESIGN PATTERNS 13

The third choice listed above is referred to as “Balking” and occurs when a method han-

dles a situation by returning without performing its normal function. Figure 2.4 illustrates

the Balking pattern using the flusher example discussed above. The Balking design pattern

is related to the following design patterns we have discussed previously:

� Single Threaded Execution design pattern, which implements synchronization on the

object by simply using the Java synchronized construct.

� Guarded Suspension design pattern, which offers an alternative course of action -

waiting, when an object is in an inappropriate state to execute a method.

2.2.6 Scheduler

The Scheduler design pattern allows for the controlling of the order in which threads are

scheduled to execute single threaded code. The pattern achieves this by using an object

that explicitly sequences the waiting threads. Basically, this pattern provides a mechanism

to implement a scheduling policy independent of any specific scheduling policy provided

by the operating system. The scheduling policy is encapsulated in its own class making it

easily reusable.

An illustration of when the Scheduler design pattern would be useful is in building

security software [Gra02]. Consider the scenario where all people accessing a building

have a badge. When a person scans the badge at any security checkpoint, the acceptance

(allowing entry) or rejection of the badge is printed on a hard copy log in a central area. A

concurrency problem could potentially occur if people go through three or more checkpoints

at the same or about the same time. To elaborate, as the first log is printing the other two

calls to the printer must wait and when that first print job completes there is no guarantee

in what order the other two logs will print. The use of a Scheduler would help alleviate this

issue. Now that we have provided a motivating example we will discuss the different class

objects required by this design pattern:

2.2. CONCURRENCY DESIGN PATTERNS 14

� Scheduler Object: Instances of the Scheduler class, schedule Request objects for

processing by a Processor object. For reusability, the Scheduler object is encapsu-

lated and is unaware of the Request class it schedules. The Scheduler object accesses

Request objects through the ScheduleOrdering interface. The Request classes imple-

ment this ScheduleOrdering interface. The Scheduler object is responsible for deciding

when the next Request will run but not the order in which the Requests will occur.

The order in which the Requests will occur is determined by the ScheduleOrdering

object. A Scheduler class example is illustrated in Figure 2.5.

� Request Object: The Request object implements the Schedule Ordering interface

and encapsulates a request for a Processor object to compute. An example of a

Request object is given in Figure 2.6.

� Schedule Ordering Object: An example of the Schedule Ordering class is given

in Figure 2.7. As mentioned previously, the Request objects implement this interface

for two primary reasons:

– Because processor objects refer to this interface they avoid a dependency on the

Request class.

– Reusability is further increased in that the Scheduler objects call methods de-

fined in this interface that make the decisions on which Request objects will be

processed next.

� Processor Object: Instances of the Processor class perform a computation described

by a Request object, as defined above. More than one Request object may be presented

to the processor to process at a time - concurrency. The Processor object delegates

the scheduling of these request objects’ processing to the Scheduler to occur one at a

time. An example of the Processor object is illustrated in Figure 2.8.

2.2. CONCURRENCY DESIGN PATTERNS 15

public class Scheduler {
private Thread runningThread ;
private ArrayList wait ingRequests = new ArrayList () ;
private ArrayList wait ingThreads = new ArrayList () ;
// enter method i s c a l l e d be f o r e the thread s t a r t s us ing
//a managed resource and does not re turn un t i l the
//managed resource i s not busy .
public void ente r (ScheduleOrder ing s) throws InterrupedExcept ion {

Thread thisThread = Thread . currentThread () ;
synchronized (this) {

i f (runningThread == null) {
runningThread = thisThread ;
return ;

}
wait ingThreads . add (thisThread) ;
wai t ingRequests . add (s) ;

}
synchronized (thisThread) {

while (thisThread != runningThread) {
thisThread . wait () ;

}
}
synchronized (this) {

int i = wait ingThreads . indexOf (thisThread) ;
wait ingThreads . remove (i) ;
wai t ingRequests . remove (i) ;

}
}
}
//Ca l l to the done method i nd i c a t e s current thread i s
// f i n i s h e d with the resource
synchronized public void done () {

i f (runningThread != Thread . currentThread ())
throw new I l l e g a l S t a t eEx c ep t i o n (Wrong Thread)

// . . .
// . . .
// . . .

runningThread = (Thread) wait ingThreads . get (next) ;
synchronized (runningThread) {

runningThread . n o t i f yA l l () ;
}

}
}

Figure 2.5: Illustration of the Scheduler object of the Scheduler pattern [Gra02]

2.2. CONCURRENCY DESIGN PATTERNS 16

public class JournalEntry implements ScheduleOrder ing {
// . . .
private Date time = new Date () ;
// . . .
//Returns time t h i s journa lEntry was crea ted .
public Date getTime () { return time ; }
// . . .
//Returns t rue i f g iven reque s t shou ld be schedu led be fo r e t h i s one .
private boolean s chedu l eBe fo re (ScheduleOrder ing s) {

i f (s instanceof JournalEntry)
return getTime () . b e f o r e (((JournalEntry) s) . getTime ()) ;

return fa l se ;
}

Figure 2.6: Illustration of the Request object of the Scheduler pattern [Gra02]

public interface ScheduleOrder ing {
public Boolean schedu l eBe fo re (ScheduleOrder ing s) ;

}

Figure 2.7: Illustration of the Schedule Ordering interface of the Scheduler pattern [Gra02]

class Pr in t e r {
private Scheduler Scheduler = new Scheduler () ;
public void pr in t (JournalEntry j) {

try {
Scheduler . en te r (j) ;
try {

// . . .
} f ina l ly {

Scheduler . done () ;
}

} catch (Inter ruptedExcept ion e) {
}

}
}

Figure 2.8: Illustration of the Processor object of the Scheduler pattern [Gra02]

2.2. CONCURRENCY DESIGN PATTERNS 17

2.2.7 Read/Write Lock

The Read/Write Lock design pattern allows for concurrent read access to an object but

exclusive access for write operations. An example where this would be useful is in an online

auction system where multiple users can read the current bid but only one user can update

the bid at a time [Gra02]. In other words, concurrent reads of data are allowed but only

single threaded access to data is allowed when updates are to be made. There are two main

classes in the Read/Write Lock design pattern:

1. A data class: For example a public class Bid () that has get() and set() methods to

read and write bids respectively.

2. A corresponding ReadWriteLock class: For example a public class ReadWriteLock()

that has readLock() and writeLock() methods which respectively set read and write locks

on the method’s calling thread. Figures 2.9 and 2.10 illustrate both of these methods.

The ReadWriteLock class also has a done() method that when called will relinquish the

read or write lock held by the thread. This method is also illustrated in Figure 2.11.

Within the data class there will be an instance of the ReadWriteLock object e.g. private

ReadWriteLock lockManager = new ReadWriteLock(); When the data class’s get() method to

read a bid, is called the first thing it will do is call the readLock() method of the instance

of the ReadWriteLock object e.g. lockManager.readLock(); and will not proceed until the

lock is obtained. Obtaining this lock ensures that it is safe to get data from the object.

The mechanics within the ReadWriteLock object ensure that while any read locks are

outstanding i.e. they have not been relinquished; no write locks will be issued. Also, if any

write locks were still outstanding the call to obtain the read lock would not return until all

write locks were relinquished. This ensures the data being read has the latest update.

Likewise, the set() method will first call the writeLock() method before it proceeds with

its execution. This ensures that it is safe to update/store the data. The mechanics within

2.2. CONCURRENCY DESIGN PATTERNS 18

synchronized public void readLock () throws Inte r ruptedExcept ion {
i f (writeLockedThread != null) {

waitingForReadLock++;
while (writeLockedThread != null) {

wait () ;
}// wh i l e
waitingForReadLock−−;
//waitingForReadLock++;

}// i f
outstandingReadLocks++;

}// readLock ()

Figure 2.9: Illustration of the ReadLock() method of the Read/Write Lock pattern [Gra02]

the ReadWriteLock object ensures that no write lock can be obtained until all read and

write locks have been relinquished.

When the get() and set() methods are completed with their processing the last thing

they do before returning is relinquish their respective read and write locks by calling the

Done() method of the instance of the ReadWriteLock object e.g. lockManager.Done(). The

Read/Write Lock design pattern is most related to the following patterns:

� The Scheduler design pattern, as the Read/Write Lock design pattern is simply a

specialized Scheduler.

� The Single Thread Execution design pattern, as the Single Threaded Execution pat-

tern is just a simpler alternative that can be used if most access to the data are writes

not reads.

2.2. CONCURRENCY DESIGN PATTERNS 19

public void writeLock () throws Inte r ruptedExcept ion {
Thread thisThread ;
synchronized (this) {

i f (writeLockedThread==null && outstandingReadLocks==0){
writeLockedThread = Thread . currentThread () ;
return ;

}// i f
thisThread = Thread . currentThread () ;
waitingForWriteLock . add (thisThread) ;

}// synchronized (t h i s)
synchronized (thisThread) {

while (thisThread != writeLockedThread) {
thisThread . wait () ;

}// wh i l e
}// synchronized (th isThread)
synchronized (this) {

waitingForWriteLock . remove (thisThread) ;
}// synchronized (t h i s)

}//writeLock

Figure 2.10: Illustration of the Writelock() method of the Read/Write Lock pattern [Gra02]

synchronized public void done () {
i f (outstandingReadLocks > 0)
{

outstandingReadLocks−−;
i f (outstandingReadLocks == 0 && waitingForWriteLock . s i z e () > 0)
{

writeLockedThread = (Thread) waitingForWriteLock . get (0) ;
writeLockedThread . n o t i f yA l l () ;

}// i f
}
else i f (Thread . currentThread () == writeLockedThread)
{

i f (outstandingReadLocks == 0 && waitingForWriteLock . s i z e ()>0){
writeLockedThread = (Thread) waitingForWriteLock . get (0) ;
writeLockedThread . n o t i f yA l l () ;

}
else
{

writeLockedThread = null ;
i f (waitingForReadLock > 0)

n o t i f yA l l () ;
}// i f

}
else
{

St r ing msg = ”Thread does not have lock ” ;
throw new I l l e g a l S t a t eEx c ep t i o n (msg) ;

}// i f
}//done ()

Figure 2.11: Illustration of the done() method of the Read/Write Lock pattern [Gra02]

2.2. CONCURRENCY DESIGN PATTERNS 20

//Producer c l a s s t ha t produces the t r o u b l e t i c k e t s .
public class Cl i en t implements Runnable {

private Queue myQueue ;
// . . .
public Cl i en t (Queue myQueue) {

This .myQueue = myQueue ;
// . . .

}
// . . .
public void run () {

TroubleTicket tkt = null ;
// . . .
myQueue . push (tkt) ;

}
}

Figure 2.12: Illustration of the Producer object of the Producer-Consumer pattern [Gra02]

2.2.8 Producer-Consumer

The Producer-Consumer design pattern allows for objects or information to be produced or

consumed sequentially in a coordinated manner. A good example of when this is useful is a

ticketing system where numerous tickets are being submitted through a client system (the

producer) and on the other end there is a dispatcher system (the consumer) that analyzes

the tickets and sends them to the appropriate destinations for a resolution [Gra02].

The Producer-Consumer design pattern requires three main objects:

� Producer Object: A Producer class which supplies (produces) the objects to be

consumed by the consumer class. There will be cases where there are no instances of

the consumer class to consume the instance of the producer so, the producer objects

are always placed in a queue. Figure 2.12 illustrates the Producer object.

� Queue Object: A Queue class which serves as the buffer between the producer and

consumer classes. The producer objects are placed in a queue object and remain there

until a consumer object pulls them out. Figure 2.13 illustrates this Queue object.

� Consumer Object: The Consumer class uses i.e. consumes, objects produced by

the producer objects. As described above they pull these objects from the queue. If

2.2. CONCURRENCY DESIGN PATTERNS 21

// the Queue c l a s s b u f f e r i n g the consumer and producer c l a s s in s tance s .
private class Queue {

private ArrayList data = new ArrayList () ;
//Put t ing o b j e c t s in the queue (w i l l be used the producer)
synchronized public void push (TroubleTicket tkt) {

Data . add (tkt) ;
Not i fy () ;

}
// Pu l l i n g o b j e c t s from the queue (w i l l be used by the consumer)
synchronized public TroubleTicket pu l l () {

While (data . s i z e () == 0) {
Try {

Wait () ;
} catch (Inte r rupteExcept ion e) {
}

}
TroubleTicket tkt = (TroubleTicket) data . get (0) ;
Data . remove (0) ;
Return tkt ;

}
public int s i z e () {

Return data . s i z e () ;
}

}

Figure 2.13: Illustration of the Queue object of the Producer-Consumer [Gra02]

//Consumer c l a s s t ha t consumes the t r o u b l e t i c k e t s .
public class Dispatcher implements Runnable {/

private Queue myQueue ;
// . . .
public Dispatcher (Queue myQueue) {

This .myQueue = myQueue ;
}
// . . .
public void run () {

TroubleTicket tkt = myQueue . pu l l () ;
// . . .

}
}

Figure 2.14: Illustration of the Consumer object of the Producer-Consumer pattern [Gra02]

the queue is empty the consumer object must wait, i.e. it will not return, until the

producer object puts an object in the queue. The consumer object is illustrated in

Figure 2.14.

2.2. CONCURRENCY DESIGN PATTERNS 22

The Producer-Consumer pattern is related to the following design patterns:

� The Guarded Suspension design pattern which is used to handle the situation where

the consumer objects want to get a producer object from an empty queue and ac-

cording to the rules of the Guarded Suspension design pattern will wait. Also, there

are situations where a max-size is implemented on the queue. In such cases when

the max-size is reached the producer objects will wait for available space before being

added to the queue, a pre-condition.

� The Pipe [Gra02] design pattern which is a specialized Producer-Consumer involving

one producer object that is usually referred to as the data source and one consumer

object usually referred to as the data sink.

� The Producer-Consumer design pattern can be viewed as a specialized Scheduler

design pattern in that it has a scheduling policy. This policy is based on resource

availability and this Scheduler does not need to regain control of the resource to

reassign it to another thread when the current thread is done.

2.2.9 Two-Phase Termination

The Two-Phase Termination design pattern provides functionality to shutdown a thread or

process in an orderly manner. It allows for various cleanup processes that are required to

occur before a system actually shuts down. This is achieved by using a latch as a flag at

specific points in the execution of the thread or process.

A good example of when this pattern is useful is in a stock trading client-server sys-

tem [Gra02]. The server is responsible for sending stock information to any client that

connects to the server and indicates that they are interested in certain stocks. When the

stock information changes the server updates the interested clients about this change. The

server propagates this information via a thread it creates for each individual client.

2.2. CONCURRENCY DESIGN PATTERNS 23

The server is also responsible for administrative tasks like shutting down the entire

server, disconnecting a client by shutting down the thread servicing the client and releasing

all related resources used by the thread.

Figure 2.15 illustrates how the Two-Phase Termination design pattern works. First,

the Session object’s run() method is called. This run() method calls the session object’s

initialize() method and then repeatedly calls the Portfolio object’s sendTransactionToClient()

method within a loop that first checks the thread’s isInterrupted flag. This isInterrupted flag is

the latch and will always return false until the session object’s interrupt() method is called.

The interrupt() method sets the thread’s interrupted flag to true. The session object’s run()

method is often handled by a different thread from the one that will do the shutdown. The

shutdown thread calls the session’s interrupt() method using myThread.interrupt(); and in so

doing sets the latch to true. The threads in use here do not have to be synchronized as

setting the flag is idempotent [Gra02], i.e. irrespective of which thread sets it the flag (latch)

will still get set to true.

2.2. CONCURRENCY DESIGN PATTERNS 24

// Sess ion c l a s s − performs s e r v e r s s tock in f o
// transmiss ion and thread terminat ion .
public class Se s s i on implements Runnable {

//Thread to communicate with s p e c i f i c c l i e n t .
private Thread myThread ;

//Object conta in ing s tock informat ion .
private Po r t f o l i o p o r t f o l i o ;
private Socket mySocket ;
// . . .
public Se s s i on (Socket s) {

myThread = new Thread (this) ;
mySocket = s ;
// . . .

}
public void run () {

i n i t i a l i z e () ;

// check ing the va lue o f the l a t c h
while (! myThread . i n t e r rup t ed ()) {

// constant updates to c l i e n t
Po r t f o l i o . sendTransact ionsToCl ient (mySocket) ;

}
}

// t h i s method s e t s the l a t c h to t rue
public void i n t e r r up t () {

// s e t t i n g the l a t c h to t rue
myThread . i n t e r r up t () ;

}
private void i n i t i a l i z e () { // . . . }
private void shutdown () { // . . . }

}

Figure 2.15: Illustration of the Two-Phase Termination pattern [Gra02]

2.3. EXISTING DESIGN PATTERN DETECTION TECHNIQUES USING
JAVA ANNOTATIONS 25

2.3 Existing Design Pattern Detection Techniques using Java

Annotations

A number of design pattern detection techniques exist but only a couple use Java annota-

tions in their approach. In this section we will start by discussing what Java annotations are,

then we will discuss 4 techniques that exist in detecting design patterns using Java annota-

tions. As mentioned in Section 2.1, these 4 detection techniques differ from our technique in

that they target the creational, structural and behavioral design patterns whilst our tech-

nique targets concurrency design patterns. Creational design patterns are design patterns

that abstract away the instantiation process making a system independent of how its objects

are created, composed and represented [GHJV95]. Structural design patterns are concerned

with with how classes and objects are composed to form larger structures [GHJV95]. Sec-

tion 2.2 gives a detailed description of concurrency design patterns.

2.3.1 Java Source Code Annotations

“Annotations are metadata or data about data. Annotations are said to annotate a Java

element. An annotation indicates that the declared element should be processed in some

special way by a compiler, development tool, deployment tool, or during runtime.” [Jam05]

Java annotations were introduced in the Java 2 Platform Standard Edition 5.0, also known

as “Tiger” as part of JSR175 [Mic06].

As described above because Java annotations allow for the definition of actual Java

elements they can be very helpful in the identification of various Java elements. For our

purposes we would want these Java annotations to identify Java elements that comprise the

various roles of specific concurrency design patterns.

A powerful aspect of Java annotations are custom annotations which provide a facility

to define and implement one’s own annotation. Custom annotations and their usage will

2.3. EXISTING DESIGN PATTERN DETECTION TECHNIQUES USING
JAVA ANNOTATIONS 26

be elaborated on in Section 2.3.2 below. We also create custom annotations in our tech-

nique. Our annotation specifications are elaborated on in Chapter 4, Section 4.2 and our

implementation of them using TXL is in Section 4.3.

Java annotations can only be used at the class declaration, field declaration and method

declaration levels. Unfortunately because Java annotations can currently not be placed at

the statement level they would not completely identify the design pattern intent within the

Java source code. We have therefore opted to comment our Java annotations to allow us

to place them anywhere in the Java source code including the statement level above Java

constructs like loops, if-statements, return statements, wait statements, notify statements,

to mention but a few.

As per JSR 308 [Ern10] there is a possibility that functionality to support Java anno-

tations at the statement level will come into being.

2.3.2 Sabo and Poruban Approach [SP09]

This detection technique was designed to address the problem that occurs when soon after

development begins, issues occur in the traceability of the design pattern due to design

patterns being a concept that stretches over different parts of an object or even over various

objects. This leads to the high potential that the design pattern implementation of the

source code will unintentionally get broken during modifications to the source code hence

losing the design patterns structure. The main objectives in resolving this problem are as

follows:

1. Enable the clear identification of language constructs that represent the design pat-

terns at the system implementation level.

2. Create the capability to determine whether a pattern is applied correctly.

3. Help in resolving broken patterns.

2.3. EXISTING DESIGN PATTERN DETECTION TECHNIQUES USING
JAVA ANNOTATIONS 27

The above objectives are realized in Sabo and Poruban’s approach through the use of

Java annotations. As discussed earlier, Java 5 introduces built in annotating functionality

which includes built in annotations like JSR175 [Mic06] and custom annotations. These

Java annotations help resolve the traceability issues described above as they can be read

and processed by development and deployment tools.

Collections of different classes and other constructs within the classes at the implemen-

tation level make up the design pattern. These classes get lost because often they implement

both the intentions of the design pattern and the intentions of the system. There are in

most cases many more system specific intentions than there are design pattern specific in-

tentions. Annotations are useful here because they can be applied to very many source code

elements and constructs. The approach here is to use custom annotations to label those

constructs that make up the design pattern so that they are easily distinguishable from the

rest of the classes and other constructs in the source code.

The aim of using annotations in this approach is to create a set of constraints or rules

to ensure that a design pattern already applied to the source code is not broken. In this

approach it is assumed that the design pattern has already been used in the source code.

Within Java the design pattern constructs are formalized in terms of the following:

1. Classes, interfaces and relationships between the constructs.

2. Enumerations and annotations.

3. Constructors, methods and member variables.

4. Modifiers, parameter lists, return types and exception lists.

The approach here is to store the design pattern information directly into the source code

using the Java annotations specifically because annotations are valid language constructs

that can express any information.

2.3. EXISTING DESIGN PATTERN DETECTION TECHNIQUES USING
JAVA ANNOTATIONS 28

At a high level this approach will basically, put the constraints or rules, as defined above,

for each design pattern construct into the code using annotations. This can be done either

manually by the programmer or through a tool that generates the source code, if one is

being used. During the compilation process of the code those entities in the code that use

the design patterns are compared against the constraints defined in their annotations. If

they do not comply with the constraint then the design pattern is considered to be broken.

The developer is then notified and provided with possible recommendations based on the

specific constraint in the annotation that was broken.

The annotating of the design patterns in the code is achieved in this approach by first

and foremost creating a specific annotation type for each design pattern. Constraints for the

design pattern are set in the “TargetDesignator” which is a meta-annotation (annotation

type definition) and is a single parameter taking an array of constraints. The source code

construct being annotated with this annotation must conform to these constraints in order to

be considered as correctly conforming to the design pattern that the annotation represents.

These structural constraints are expressed in an extensible language created specifically

for its ease in automated processing, which is usually done during compilation as described

earlier but can theoretically be done anytime, and its ease in being read by programmers.

Because design patterns can be implemented in different ways, the annotation type

definition should be adjustable. This is easy to do in this approach by adjusting the ap-

propriate constraint(s) for different implementations of the design pattern. The ID and

role parameters are introduced to aid in identifying different implementations of the design

pattern [HLH06]. ID is simply the unique identifier for each distinct implementation of the

design pattern.

2.3.3 Meffert Approach [Mef06]

Like in the Sabo and Poruban Approach, the Meffert Approach uses Java annotations to de-

tect design patterns but does not use the built in annotations introduced by JSR175 [Mic06]

2.3. EXISTING DESIGN PATTERN DETECTION TECHNIQUES USING
JAVA ANNOTATIONS 29

in Java 5. The reason for this is that these annotations are too rigid since they can only be

used in source code at the declaration level not the statement level. Due to the fact that

an annotation can only be applied to one declaration the functionality and expressiveness

of the annotations is limited. In Meffert’s approach the Java custom annotations are used

and accomplish the following goals:

1. Express the source code intentions in the system.

2. Express design pattern intentions in the system.

These annotations can then be used to give advice on a suitable design pattern to

implement by basically matching source code intentions to design pattern intentions. This

is important because of the complexity of design patterns and their ever increasing number.

The annotation of a section of source code is determined by the developer. First of

all only code that fits within the context of the problem (as viewed by the developer) will

be considered for the annotation. The annotation can be referred to as the developer’s

expression of the source code intention.

The design pattern intentions are not in the source code but are in a separate file. Unlike

in the Sabo and Poruban Approach [SP09], where design pattern intentions are stored

directly in the source code using the Java annotations. The aim in Meffert’s approach is

to have the design pattern intentions (i.e. the constraint semantics of the design pattern),

match up with the source code annotations which are representative of the source code

intentions. This is achieved by:

1. Ensuring that the same syntax is used for both the design pattern intentions and the

source code intentions.

2. Describing the design pattern intentions in a set of tuples where each tuple contains

an intention that corresponds to one or many of the source code annotations.

Other Java annotation application possibilities discussed in this approach include:

2.3. EXISTING DESIGN PATTERN DETECTION TECHNIQUES USING
JAVA ANNOTATIONS 30

1. Selection of design patterns using a tool that will use the above described functionality.

2. Automatically applying the Java annotations in the code which contain the source

code intentions as described earlier.

3. Applying selected design patterns to the code.

2.3.4 He, Li and He Approach [HLH06]

The aim in this approach is to resolve traceability issues related to design pattern informa-

tion in source code by using Java annotations. Two approaches to extract the design pattern

information contained within the Java annotations in the Java programs are discussed in

this research:

1. Visualization of design pattern instantiation information in a Java program.

2. Automatic checking of the structural properties of a pattern instance in a Java pro-

gram.

The source code is manually annotated with the design pattern information.

To extract and visualize the design pattern instantiation information, the reflection

feature in Java is used. Reflection in the Java programming language can be defined as “a

feature that allows an executing Java program to examine or ‘introspect’ upon itself, and

manipulate internal properties of the program” [McC98]. Use of the reflection functions of

Java enable obtaining related information from the Java classes and methods then, using

the getAnnotations() method to extract this annotated information. This information can

then be visualized in different formats (e.g. using HTML web pages).

Part of this approach involves checking the structural properties of the design pattern

instance(s) in the Java program. This check is made to determine whether the application

implemented all the roles contained with the design pattern as well as all the methods

with the role(s). This is done by comparing the design pattern information extracted

2.3. EXISTING DESIGN PATTERN DETECTION TECHNIQUES USING
JAVA ANNOTATIONS 31

from the code and comparing it with the design pattern meta-model. This involves the

following [HLH06]:

1. Extracting the values from the @PatternRoleImplementation, @PatternPropertyImplementa-

tion and @PatternMethodImplementation annotations.

2. Comparing the extracted information in (1) above with meta-model of the design

pattern. This includes checking for generalization relationships between classes.

3. Checking whether the program has implemented the generalization and association

relationships among the corresponding design pattern roles in the meta-model.

4. Checking whether the program code satisfies the constraints in the meta-model.

2.3.5 Rasool, Philippow and Mader Approach [RPM08]

The aim here is the recovery (extraction) of design patterns from legacy systems based

on annotations, regular expressions, Sparx Enterprise Architect Modeling tool (EA) and

database queries. The approach used in this research helps reduce the traceability problem,

similar to some of the other approaches discussed above. Detection of design patterns in

huge legacy systems can help with better maintenance of the system.

In this approach fifty annotations have been created that relate to specific design pat-

terns. These can be placed in the code by the developer to help with the documentation

and maintenance of legacy systems. This is a manual process done by the developer and not

automated. These annotations can be used for both human and machine readability. The

human readability part is used for static analysis and the machine readability for dynamic

analysis.

Pattern detection is done by matching the Id of the annotation in the source code to

the corresponding Id in the annotation.type file.

In summary the design pattern recovery in this approach is achieved as follows:

2.4. SUMMARY 32

1. Manual annotation of the source code.

2. Using EA on the source code, the source code model is obtained which includes various

relationships between different elements in the code but unfortunately does not include

other valuable information required for design pattern discovery (hence the use of

regular expressions as explained later).

3. Features of each design pattern are defined and constraints are created from the

concatenations of these features.

4. These constraints are translated into SQL queries and regular expressions which will

be used to search for the desired design pattern.

5. Extraction of delegation information, aggregation information and other relationships

from the source code using regular expressions due to the limitations in the use of EA

as hinted on in point (2) above (mainly inability to obtain delegation information,

aggregation information and friend relationships between classes).

6. Use of a prototyping tool they have developed (an Add-In with the VS.Net framework)

to perform experiments on various examples.

2.4 Summary

In this chapter we have given a background into our research topic of identifying concur-

rency design patterns in Java source code. In Section 2.2 we elaborated on what concurrency

design patterns are. We discussed in detail the 8 concurrency design patterns that we are

specifically targeting. In Section 2.3 we discussed 4 techniques currently in use to detect

design patterns using Java annotations. Just to reiterate, these approaches target the cre-

ational, structural and behavioral design patterns, whilst our approach targets concurrency

design patterns.

2.4. SUMMARY 33

We also gave an overview of what Java annotations are in Section 2.3, as they play a

very important role in identifying the roles that make up the different concurrency design

patterns. In the upcoming chapters, specifically Chapters 3 and 4, we will delve into our

technique of detecting and identifying concurrency design patterns.

34

Chapter 3

Concurrency Design Pattern

Detection

3.1 Overview

As mentioned briefly earlier in our approach we use a static analysis technique to detect

concurrency design patterns. We are targeting specifically 8 concurrency design patterns

which were elaborated on in Chapter 2, namely:

1. Single Threaded Execution (also called Critical Section)

2. Lock Object

3. Guarded Suspension

4. Balking

5. Scheduler

6. Read/Write Lock

7. Producer-Consumer

8. Two-Phase Termination

3.1. OVERVIEW 35

Figure 3.1: Parsing of the Java source code by TXL

We have created 8 TXL programs each of which finds one of the 8 design patterns above.

Each of these TXL programs has a set of rules that correspond to the various forces (roles)

that determine a specific concurrency design pattern. Figure 3.1 shows the general form

in which we are going to use TXL. In brief, the TXL programs will take Java source code

which, they will parse based on the design pattern rules established from the design pattern

roles and as output, provide conformance reports on whether they were or were not able to

detect the design patterns.

In this chapter we will start by providing a background into TXL and why we chose it

for our technique. This will be discussed in Section 3.2 below. In Section 3.3 we will discuss

our approach in detail, elaborating on how we used TXL in our technique to detect the

concurrency design patterns. This will involve a detailed discussion on how we identified

the concurrency design pattern roles in the Java source code and created TXL rules to

correspond to them and then detect them.

3.2. BACKGROUND: TXL 36

3.2 Background: TXL

TXL is a domain specific language used widely for source code transformation [CCH07].

TXL’s basic operation can be described as follows:

“The basic paradigm of TXL involves transforming input to output using a set of trans-

formation rules that describe by example how different parts of the input are to be changed

into output. Each TXL program defines its own context-free grammar according to which the

input is to be broken into parts, and rules are constrained to preserve grammatical structure

in order to guarantee a well-formed result.” [CCH07]

A grammar in TXL describes elements in the language that can be transformed. For

example the Java.Grm describes the Java programming language as would be used when

transforming Java source code. Rules are used to help match elements of the language and

transform them to what the user requires. For example, one could transform a set of if

statements to case statements. Both of these constructs would be defined in the grammar

file and the “.txl” files would contain the rules to do the actual matching of the constructs

and then their transformation. Figure 3.2 [CCH07] shows the three phases of the TXL

transformation process:

1. Parsing: TXL takes the input and parses it into a tree as defined by the language

grammar.

2. Transforming: TXL then transforms the input tree into a new tree using the rules

defined in the TXL program.

3. Unparsing: TXL unparses the new tree to produce the desired transformed output.

As noted above, apart from its pattern matching capability, an added advantage of TXL

is that it offers parsing for free and does not require the development or use of a separate

parser.

3.2. BACKGROUND: TXL 37

Figure 3.2: Illustration of the three phases of TXL [CCH07]

Given the above features of TXL we decided that it would be an ideal language to enable

us to identify concurrency design patterns and transform the source code by adding Java

annotations detailing the different roles comprising the design patterns. Our approach will

be discussed in more detail shortly but, in brief, we created rules for the different roles that

make up the concurrency design patterns. For a specific concurrency design pattern, if all

the rules are successfully matched in the Java source code then we deduce that the design

pattern exists in that Java program and annotate the code accordingly.

3.2.1 Some important Constructs in the TXL Language

To understand TXL examples in the subsequent parts of this thesis, it is necessary to

discuss some of TXLs features in more detail. Specifically we will discuss defines, redefines,

functions and rules.

3.2. BACKGROUND: TXL 38

redefine v a r i a b l e d e c l a r a t i o n
[v a r i a b l e d e c l a r a t i o n 2]
| [attr labelM] [repeat mod i f i e r] [t y p e s p e c i f i e r]
[v a r i a b l e d e c l a r a t o r s] ' ; [NL]

end redefine

define v a r i a b l e d e c l a r a t i o n 2
[repeat mod i f i e r] [t y p e s p e c i f i e r] [v a r i a b l e d e c l a r a t o r s] ' ; [NL]

end define

Figure 3.3: Illustration of TXL define and redefine constructs

Defines and Redefines

A define is “the basic unit of a TXL grammar” [CCH07]. As the name states it provides a

means of actually describing an element in the source code that is going to be parsed and

transformed. Figure 3.3, variable declaration2, shows the definition. Each of those constructs

within its definition was in turn defined previously, in this particular case in a Java.Grm file.

The Java.Grm file contains most Java source code construct definitions and can be included

in individual TXL programs to use for Java source code transformation. In some cases a

define can also occur in the TXL file when we want a program to be parsed in a way that

aids in the source code transformation.

A redefine allows for the overriding of the original define, giving a new description for

the element previously defined. As illustrated in Figure 3.3 variable declaration has been

overridden. variable declaration was initially defined in the Java.Grm file but is now redefined

in the TXL file.

Functions and Rules

It is in the function and rule constructs of the TXL program that the matching of elements

that were created in the parse tree (during the parsing phase), is done and transformation to

a new tree is accomplished. This is achieved by the replace and by clauses in the definition

of the function or rule. Functions and rules must at the bare minimum have these two

3.2. BACKGROUND: TXL 39

function name
replace [type]

pattern
by

replacement
end function

Figure 3.4: Illustration of a TXL
function [CCH07]

rule name
replace [type]

pattern
by

replacement
end rule

Figure 3.5: Illustration of a TXL
rule [CCH07]

clauses. There are a few exceptions to this however, for example “matching functions”

which will be elaborated on later in Section 3.3.3 of this chapter.

The structure of a function and a rule are illustrated in Figures 3.4 and 3.5 [CCH07].

In terms of structure, the function and rule, TXL constructs are identical except for their

names. In terms of functionality, the only difference between the two is that a function will

search for and replace only the first match it finds, but a rule will search for every match

of the pattern of elements and replace them all until no more can be found.

It is in the replace clause that elements to be matched are placed and in the by clauses

that the elements that they will be replaced by are put. This whole process will be elab-

orated on in Section 3.3 of this chapter when we are discussing the various functions and

rules created to accomplish our design pattern matching.

Other TXL Constructs

The attr construct defines the item following it as being an optional attribute. Figure 3.3

shows an example of the attr construct being used. In this case in the statement [attr

labelM], it defines labelM as an optional attribute.

The repeat construct allows for zero or more repetitions of the item following it to be

matched. Figure 3.3 shows an example of the repeat construct being used. In this case in

the statement [repeat modifier], a modifier can exist zero or more times.

3.3. APPROACH 40

For a comprehensive overview of all TXL language constructs see [CCH07]. In Sec-

tion 3.3 below, we will introduce and elaborate on a few other TXL constructs that we used

in developing our TXL programs to accomplish our goal of detecting concurrency design

patterns in Java source code and later adding Java annotations to the source code through

TXL’s matching and transformation capability, to identify where these design patterns are.

3.3 Approach

Our approach entailed first and foremost identifying the roles that comprise the individual

design patterns. After determining these roles we created TXL rules that corresponded to

them. As we tested our TXL rules against Java source code examples we ended up revising

and refining the rules to make them either more rigid or less rigid in identifying the patterns.

This will be elaborated on in Section 3.3.4 of this chapter.

3.3.1 Using TXL for Design Pattern Detection

At a high level Figure 3.6 illustrates our detection technique using TXL. The TXL parser

takes the following:

1. Our TXL programs in which we have created our rules to detect the patterns.

2. The Java source code in which we want to identify the design patterns and annotate.

3. The Java grammar file that contains all Java source code elements and constructs.

TXL then outputs the Java source code with the design pattern and its respective roles

identified and annotated.

Java Grammar file

The Java grammar file as discussed earlier is a file containing defines for almost all Java

source code constructs. Rather than define the numerous Java source code constructs that

3.3. APPROACH 41

Figure 3.6: Illustration of our Concurrency Design Pattern Detection Technique

we will need in our TXL code for our pattern matching, we have simply used the include

statement at the very top of our TXL code to add its defines to our TXL code, as follows:

Include “Java.Grm”. This grammar file is located in the same location as our TXL code.

Defines and Redefines

To be useful for our design pattern matching, we have had to define new constructs and

redefine some of the TXL constructs we included as part of the “Java.Grm” file. The

defining and redefining of TXL constructs is done at the top of the TXL file just after the

“Java.Grm” file is included.

The first new define we added was labelM, illustrated in Figure 3.7. labelM is used to

add the construct MUTATED at the beginning of Java constructs that we match. This is

important because most of the pattern matching we are doing is done via the use of TXL

“rules”. As described earlier “rules” unlike “functions” continue to find a match until none

is found. If we do not mutate the construct that is matched by the rule then the TXL

program could go into an indefinite loop as the same construct will be matched by the rule

3.3. APPROACH 42

define labelM
'MUTATED

end define

Figure 3.7: Illustration of defining new construct, labelM

redefine c l a s s d e c l a r a t i o n
[c l a s s d e c l a r a t i o n 2]
| [attr labelM] [c l a s s h e ad e r] [c l a s s body]
| [attr labelM] /* [s t r i n g l i t] */ [NL]
[c l a s s h e ad e r] [c l a s s body]

end redefine

define c l a s s d e c l a r a t i o n 2
[c l a s s h e ad e r] [c l a s s body]

end define

Figure 3.8: Illustration of class declaration redefine

over and over again.

Therefore, to facilitate the prevention of indefinite attempts at pattern matching we

have had to redefine some of the TXL constructs to allow for them to accept the MU-

TATED keyword at their front. The TXL constructs that we redefined are class declaration,

method declaration, variable declaration, while statement, do statement and expression statement. Fig-

ure 3.8 illustrates this redefine for the class declaration TXL construct.

We start by defining a class declaration2 construct that is the same as class declaration, the

original in the “Java.Grm” file. We then redefine the class declaration construct. In this case

we are saying that a class declaration can be one of the three possibilities as follows:

1. class declaration2 which is basically what the original class declaration define was and

comprises all the elements that make up a class declaration in Java.

2. The same as (1) above except that it has the keyword MUTATED, that we defined as

labelM, in front of it.

3. The same as (1) above except that it has a [NL], representing a new line, in front of

3.3. APPROACH 43

it, any string in front of the [NL] and the keyword MUTATED in front of the string.

3.3.2 Identification of Concurrency Design Pattern Roles

The primary source used to define the concurrency design pattern roles was “Patterns in

Java Vol. 1” [Gra02]. Using this text we selected eight of the eleven concurrency design

patterns described earlier in Section 2.2.1. For each of these design patterns the text

described the specific roles that make up the design pattern.

With this information we proceeded to create a summary document for each design

pattern, listing each role that constitutes the pattern. For example for the Single Threaded

Execution pattern one role or constraint (actually the only role for it) is that a method

has to be synchronized. So, in this case the constraint is that the method has to have the

keyword synchronized as one of its modifiers. We ended up refining this role slightly, as will be

discussed later in the refinement section of this chapter in regards to the Guarded Suspension

design pattern that also implements the Single Threaded Execution design pattern. The

tables in Appendix A give an in depth look into all the pattern roles that we identified for

each of the eight concurrency design patterns.

From the same text [Gra02] we got specific Java source code examples for each of the

eight concurrency design patterns and proceeded to put comments in the source code. These

comments were an identification of each role that comprises the pattern and we placed them

at the method level for where the role actually occurs. Figure 3.9 illustrates the commenting

of the source code with the design pattern roles. This particular example illustrates the

Guarded Suspension design pattern.

Because the Guarded Suspension design pattern is a rather elaborate pattern we will be

using it as a running example for the rest of the chapter (i.e. for the creation of TXL rules

and their refinement, Sections 3.3.3 and 3.3.4 respectively).

3.3. APPROACH 44

//***//
//*** Guarded Suspension pa t t e rn : ***//
//*** I f a cond i t i on tha t prevent s a method from ***//
//*** execu t ing e x i s t s , t h i s des ign pa t t e rn ***//
//*** a l l ows f o r the suspension o f t ha t method ***//
//*** un t i l t ha t cond i t i on no longer e x i s t s . ***//
//***//
import java . u t i l . ArrayList ;

public class Queue {
private ArrayList data = new ArrayList () ;

//***Role = 1(Ensuring a method in the c l a s s i s synchronized .
//***Contains Role 1a .) ; ID = 1.
//***Role = 1a(Ensure there i s a no t i f y () or n o t i f yA l l () s tatement .) ;
//***ID = 1.
synchronized public void put (Object obj) {

data . add (obj) ;
n o t i f y () ;

} // put (Object)

//***Role = 2(Ensuring a method in the c l a s s i s synchronized .
//***Contains Role 2a .) ; ID = 1.
//***Role = 2a(Ensuring there i s a wh i l e s tatement .
//***Contains Role 2aa .) ; ID = 1.
//***Role = 2aa (Ensuring there i s a wait () s tatement .) ; ID = 1.
synchronized public Object get () {

while (data . s i z e () == 0) {
try {

wait () ;
} catch (Inter ruptedExcept ion e) {
} // t ry

} // wh i l e
Object obj = data . get (0) ;
data . remove (0) ;
return obj ;

} // ge t ()
} // c l a s s Queue

Figure 3.9: Illustration of Guarded Suspension design pattern roles in Java source code

3.3.3 Creation of the TXL rules

Once the roles were identified, we proceeded to create actual TXL rules to correspond to

the roles. We created a TXL program for each of the eight concurrency design patterns.

Each of these TXL programs contains the rules corresponding to the roles identified and

listed in Appendix A.

Our first steps for each of the eight TXL programs was to ensure that the TXL rules we

3.3. APPROACH 45

created, correctly corresponded to the roles in the respective concurrency design pattern.

We cross checked that the TXL rules matched their respective concurrency design pattern

role by creating TXL array-like collections to house the names of the various Java source

code components that comprise the design pattern role. These collections would then get

populated by these Java source code components as they were located by their respective

TXL rules.

After the TXL program completed the detection of the concurrency design pattern, it’s

last step was to print out these items from the TXL array-like collections to the screen. For

example in the case of the Guarded Suspension design pattern we printed out the names

of the methods that satisfy Role 1 (i.e. the synchronized methods that have a notify() or

notifyAll() statement within them) and Role 2 (i.e. the synchronized methods that have a

loop within them and a wait() statement within the loop) to the screen. This way we were

certain that the rules did successfully match their respective concurrency design pattern

roles.

Main function

The main function in our TXL program to identify the Guarded Suspension design pattern

is illustrated in Figure 3.10. We start by declaring global variables using the TXL keyword

export. These variables will be used later in our TXL program to, amongst other things,

obtain the number of Guarded Suspension design pattern instances and the number of

synchronized methods.

After declaring those global variables we use a replace-by clause as is required for all

rules and functions. The general practice in TXL program main functions is to replace the

program which is represented by the TXL keyword program. Basically the whole program

is parsed into a tree and elements within that tree will be replaced by what is contained in

the by part of the function. In our case we have created rules, the first being findGuardedSus-

pensionPattern, that will act on the parsed program tree.

3.3. APPROACH 46

function main
export Counter [number]

0
export CountFirstSynchMethIDs [number]

0
export CountSecondSynchMethIDs [number]

0
export numVarsIDCollection [repeat id]

export FirstSynchMethIDs [repeat id]

export SecondSynchMethIDs [repeat id]

export no t i f yCo l l e c t i o n [repeat exp r e s s i on]

export wa i tCo l l e c t i on [repeat exp r e s s i on]

replace [program]
P [program]

by
P [f indGuardedSuspens ionPattern] [printPatternNotFound]

[printOutput] [pr intFirstSynchMethIDs]
[printSecondSynchMethIDs] [p r i n tNo t i f yCo l l e c t i o n]
[p r in tWai tCo l l e c t i on]

end function

Figure 3.10: Illustration of the main function

The findGuardedSuspensionPattern rule will be elaborated on in the following section but,

in summary, it is through this rule that our matching of Java constructs that determine

whether the Guarded Suspension design pattern exists, occurs.

The other rules that are called in this main function are the print functions we created,

which basically write out our findings to the screen after the pattern matching occurs. We

will elaborate on these as well in a later section dedicated specifically to describing them.

Rules Corresponding to Design Pattern Roles

The Guarded Suspension design pattern is comprised of five roles (see Appendix A, Ta-

ble A.3: Guarded Suspension design pattern Roles, for a description of each). We have

created TXL rules that basically correspond directly to these roles.

findGuardedSuspensionPattern rule: The first rule we created and that was introduced

3.3. APPROACH 47

rule f indGuardedSuspens ionPattern
replace [c l a s s d e c l a r a t i o n]

CH [c l a s s h e ad e r] CB [c l a s s body]
construct NumVarInstancesFound [c l a s s body]

CB [findAllNumberVars]
construct InstanceFoundFirstSynchMeth [c l a s s body]

CB [find1stSynchMethod1] [f ind1stSynchMethod2]
construct InstanceFoundSecondSynchMeth [c l a s s body]

CB [find2ndSynchMethod1] [find2ndSynchMethod2]
by

'MUTATED CH CB
end rule

Figure 3.11: Illustration of the findGuardedSuspensionPattern rule

in the previous section is the findGuardedSuspensionPattern rule. This is the rule from which

the rules corresponding to the Guarded Suspension design pattern roles emerge. From

within it we call the other rules discussed below. This rule is illustrated in Figure 3.11. The

rule does a replace right at the class level of the Java program.

findAllNumberVars rule: The first rule called from within the findGuardedSuspensionPat-

tern rule is the findAllNumberVars rule, illustrated in Figure 3.12. This rule does not corre-

spond to a Guarded Suspension design pattern role but simply collects a list of all variables

declared within the program and stores them in the global variable numVarsIDCollection. num-

VarsIDCollection, is one of those global variables that we declared in the main function using

the TXL keyword export. As illustrated in Figure 3.12, to populate a global variable from

another rule or function, the TXL keyword import is used to first of all obtain the variable

and then an export is performed to repopulate it and have its new value available globally.

find1stSynchMethod1 rule: The find1stSynchMethod1 rule illustrated in Figure 3.13 cor-

responds to role 1 of the Guarded Suspension design pattern and ensures that there is one of

two required synchronized methods (guarded methods) in the Java program under analysis.

find1stSynchMethod2 is a variation of this rule and will be discussed in the refinement of TXL

rules section further below, Section 3.3.4.

hasNotifyOrNotifyAll rule: The hasNotifyOrNotifyAll rule corresponds to role 1a of the

3.3. APPROACH 48

rule f indAllNumberVars
construct VARTYPE [t y p e s p e c i f i e r]

' shor t
construct VARTYPE2 [t y p e s p e c i f i e r]

' i n t
construct VARTYPE3 [t y p e s p e c i f i e r]

' long
construct VARTYPE4 [t y p e s p e c i f i e r]

' f l o a t
construct VARTYPE5 [t y p e s p e c i f i e r]

' double
replace [v a r i a b l e d e c l a r a t i o n]

RM [repeat mod i f i e r] TS [t y p e s p e c i f i e r]
VDS [v a r i a b l e d e c l a r a t o r s] ' ;

where
TS [isVarOfType VARTYPE] [isVarOfType VARTYPE2]

[isVarOfType VARTYPE3] [isVarOfType VARTYPE4]
[isVarOfType VARTYPE5]

deconstruct VDS
LVD [l i s t v a r i a b l e d e c l a r a t o r +]

deconstruct LVD
VN [var iab le name] OEVI [opt e q u a l s v a r i a b l e i n i t i a l i z e r]

deconstruct VN
DN [declared name] RD [repeat dimension]

deconstruct DN
objectID [id] OGP [opt gener i c paramete r]

import numVarsIDCollection [repeat id]
construct newIDCol lect ion [repeat id]

numVarsIDCollection [. objectID]
export numVarsIDCollection

newIDCol lect ion
by

'MUTATED RM TS VDS ' ;
end rule

Figure 3.12: Illustration of the findAllNumberVars rule

Guarded Suspension design pattern and determines if there is a notify() or notifyAll() Java

statement in the synchronized method being matched in the rules find1stSynchMethod1 and

find1stSynchMethod2 from which it is called. This rule is illustrated in Figure 3.14. Figure 3.13

illustrating find1stSynchMethod1, shows how it is called. One important observation to make

about this rule is that it takes a parameter. This parameter is of the type method declarator

and basically houses the declaration of the synchronized method being analyzed.

As seen in previous illustrations, including Figure 3.14, the TXL keyword construct is

used to create new variables that can be used in the rules for the matching of elements

3.3. APPROACH 49

rule f ind1stSynchMethod1
construct SYNCH [mod i f i e r]

' synchron ized
replace [method dec larat ion]

RM [repeat mod i f i e r] TS [t y p e s p e c i f i e r] MD [method dec larator]
OT [opt throws] MB [method body]

where
RM [isMethodSynchronized SYNCH]

deconstruct MB
BL2 [block]

deconstruct BL2
'{

RDS3 [repeat de c l a r a t i on o r s t a t emen t]
'}

construct InstanceFound [repeat de c l a r a t i on o r s t a t emen t]
RDS3 [hasNot i fyOrNot i fyAl l MD]

by
'MUTATED RM TS MD OT MB

end rule

Figure 3.13: Illustration of the find1stSynchMethod1 rule

within the parsed tree or even added to the new trees created via the TXL transformation

phase. The TXL keyword deconstruct is just as important in TXL functionality. Unlike

construct, deconstruct breaks TXL elements into smaller elements to aid in deeper pattern

matching. These new elements created from the deconstruction of larger elements can also

be added to new parse trees.

find2ndSynchMethod1 rule: The find2ndSynchMethod1 rule, which is very similar to the

find1stSynchMethod1, rule is illustrated in Figure 3.15. This rule corresponds to Role 2 of the

Guarded Suspension design pattern and determines whether the second of the two required

synchronized methods exists in the Java source code. The find2ndSynchMethod2 rule is a

variation of this rule and will be discussed later in Section 3.3.4 of this chapter.

isWhileLpWait rule: The isWhileLpWait rule is called from within rule find2ndSynchMethod1

discussed previously and is illustrated in Figure 3.16. The rule corresponds to both roles 2a

and 2aa of the Guarded Suspension design pattern. The purpose of this rule as required by

roles 2a and 2aa is to determine whether the second synchronized method being matched

has a while loop and whether within the while loop a Java wait() statement exists. Rule

3.3. APPROACH 50

rule hasNot i fyOrNot i fyAl l MD [method dec larator]
replace [e xp r e s s i on s ta t ement]

EX [exp r e s s i on] ' ;
construct i dNot i f y [id]

' no t i f y
construct i dNo t i f yA l l [id]

' no t i f yA l l
construct idNot i fyExpr [a s s i gnment expre s s i on]

' no t i f y ()
construct idNot i fyAl lExpr [a s s i gnment expre s s i on]

' no t i f yA l l ()
deconstruct EX

AE [as s i gnment expre s s i on]
where

AE [isAssignmentExpr idNot i fyExpr]
[isAssignmentExpr idNot i fyAl lExpr]

deconstruct MD
MN [method name] ' (LFP [l i s t formal parameter] ')
RD [repeat dimension]

deconstruct MN
DN [declared name]

deconstruct DN
methodID [id] OGP [opt gener i c paramete r]

import FirstSynchMethIDs [repeat id]
construct newMethodIDs [repeat id]

FirstSynchMethIDs [. methodID]
export FirstSynchMethIDs

newMethodIDs
import CountFirstSynchMethIDs [number]
construct PlusOne [number]

1
construct NewCount [number]

CountFirstSynchMethIDs [+ PlusOne]
export CountFirstSynchMethIDs

NewCount
import no t i f yCo l l e c t i o n [repeat exp r e s s i on]
construct newNot i fyCo l l e c t i on [repeat exp r e s s i on]

n o t i f yCo l l e c t i o n [. EX]
export no t i f yCo l l e c t i o n

newNot i fyCo l l e c t i on
by

'MUTATED
EX ' ;

end rule

Figure 3.14: Illustration of the hasNotifyOrNotifyAll rule

isDoWhileLpWait is a variation of this rule and will be discussed later in this chapter, in

Section 3.3.4.

completeStats function: The completeStats function illustrated in Figure 3.17 is the last

of the rules/functions called that originate from the rule findGuardedSuspensionPattern. This

3.3. APPROACH 51

rule find2ndSynchMethod1
construct SYNCH [mod i f i e r]

' synchron ized
replace [method dec larat ion]

RM [repeat mod i f i e r] TS [t y p e s p e c i f i e r] MD [method dec larator]
OT [opt throws] MB [method body]

where
RM [isMethodSynchronized SYNCH]

deconstruct MB
BL2 [block]

deconstruct BL2
'{

RDS3 [repeat de c l a r a t i on o r s t a t emen t]
'}

construct InstanceFound [repeat de c l a r a t i on o r s t a t emen t]
RDS3 [isWhileLpWait MD] [isDoWhileLpWait MD]

by
'MUTATED RM TS MD OT MB

end rule

Figure 3.15: Illustration of the find2ndSynchMethod1 rule

rule isWhileLpWait MD [method dec larator]
replace [wh i l e s ta tement]

' whi le ' (EX [exp r e s s i on] ')
STMT [statement]

construct waitStmt [statement]
'wait () ;

import numVarsIDCollection [repeat id]
where

STMT [hasStmt waitStmt] [hasWaitStmt each numVarsIDCollection]
construct InstanceFound [method dec larator]

MD [completeStats MD EX]
by

'MUTATED
' whi le ' (EX ')

{
STMT

}
end rule

Figure 3.16: Illustration of the isWhileLpWait rule

function is called from within the isWhileLpWait rule and its variation isDoWhileLpWait.

This rule does not correspond to any of the roles in the Guarded Suspension design

pattern. It’s sole purpose is to populate many of the global variables that were declared in

the main function, with statistics to be printed out. For example:

3.3. APPROACH 52

1. The collection of all Java wait() statements used.

2. The number of both the first and second synchronized methods that are required roles

for the Guarded Suspension design pattern.

3. The number of instances of the Guarded Suspension design pattern found in the Java

source code being analyzed. This is stored in the Counter variable.

Matching Functions

To aid in our design pattern matching we created functions whose sole purpose is to check

for the existence of specific Java constructs. To elaborate on how these matching functions

work I will discuss the isMethodSynchronized function that is one of the functions illustrated

in Figure 3.18.

The isMethodSynchronized function takes a parameter called SYNCH that is of type modifier

and either succeeds if it finds the modifier represented within SYNCH anywhere within the

calling construct or fails if it does not.

Figure 3.15, illustrating rule find2ndSynchMethod1, is an example of where the isMeth-

odSynchronized matching function is called. Here the variable SYNCH is populated with the

Java construct synchronized which is a valid modifier. This function is called off the construct

RM which is a list of modifiers. If synchronized is found to be amongst the modifiers in RM

then the function passes, but if synchronized is not amongst the modifiers then the function

fails. In Figure 3.18 the isMethodSynchronized function is called as part of a where clause.

This ensures that the rule find2ndSynchMethod1 will either proceed or not proceed depending

on whether synchronized is or is not found, respectively in the matching function.

Printing Functions

After the rule findGuardedSuspensionPattern is called from within the main function and com-

pletes its pattern matching as elaborated on in detail in the last few sections, the print

3.3. APPROACH 53

function completeStats MD [method dec larator] EX [exp r e s s i on]
replace [method dec larator]

MD
deconstruct MD

MN [method name] ' (LFP [l i s t formal parameter] ')
RD [repeat dimension]

deconstruct MN
DN [declared name]

deconstruct DN
methodID [id] OGP [opt gener i c paramete r]

import SecondSynchMethIDs [repeat id]
construct newMethodIDs [repeat id]

SecondSynchMethIDs [. methodID]
export SecondSynchMethIDs

newMethodIDs
import wa i tCo l l e c t i on [repeat exp r e s s i on]
construct newWaitCol lect ion [repeat exp r e s s i on]

wa i tCo l l e c t i on [. EX]
export wa i tCo l l e c t i on

newWaitCol lect ion
import CountSecondSynchMethIDs [number]
construct PlusOne [number]

1
construct NewCount [number]

CountSecondSynchMethIDs [+ PlusOne]
export CountSecondSynchMethIDs

NewCount
import CountFirstSynchMethIDs [number]
construct numZero [number]
'0
where not

CountFirstSynchMethIDs [hasNumber numZero]
where not

CountSecondSynchMethIDs [hasNumber numZero]
import Counter [number]
construct PlusOneb [number]

1
construct NewCountb [number]

Counter [+ PlusOneb]
export Counter

NewCountb
by

MD
end function

Figure 3.17: Illustration of the completStats function

functions are called. The sole purpose of the print functions as mentioned earlier is to print

out messages to the screen. Figure 3.19 and 3.20 illustrate how this is done by using the

TXL keyword print.

For the printPatternNotFound function illustrated in Figure 3.19 all we are doing is checking

3.3. APPROACH 54

% Function to check i f the synchronized modi f i e r i s be ing used .
function i sMethodSynchronized SYNCH [mod i f i e r]

match * [mod i f i e r]
SYNCH

end function

% Function to check i f the synchronized modi f i e r i s be ing used
% by the ” t h i s ” keyword .
function isMethodSynchdUsingThis THIS [exp r e s s i on]

match * [e xp r e s s i on]
THIS

end function

% Function to check i f t he re i s a match to a v a r i a b l e ID .
function matchesVarID theID [id]

match * [id]
theID

end function

Figure 3.18: Illustration of matching functions

function printPatternNotFound
replace [program]

P [program]

import Counter [number]

where
Counter [= 0]

construct InstanceFound [s t r i n g l i t]
”*** No in s t an c e s o f Guarded Suspens ion Pattern found . ”

construct InstanceFoundPrint [id]
[unquote InstanceFound] [p r i n t]

by
P

end function

Figure 3.19: Illustration of the printPatternNotFound function

whether the global variable Counter is “0”. If it is then that means no instances of the

Guarded Suspension design pattern were found and a message to that effect will be printed

to the screen.

For the printOutput function illustrated in Figure 3.20, we again check Counter, but this

time to see if the value is greater than zero. If it is then that means 1 or more instances

3.3. APPROACH 55

% Function p r in t out the number o f Guarded Suspension
% des ign pa t t e rn ins tance s found .
function printOutput

replace [program]
P [program]

import Counter [number]
where

Counter [> 0]
construct InstanceFound [s t r i n g l i t]

”** In s t ance s o f Guarded Suspsens ion Pattern found = ”
construct InstanceFoundPrint [id]

[unquote InstanceFound] [+ Counter] [p r i n t]
by

P
end function

Figure 3.20: Illustration of the printOutput function

of the Guarded Suspension design pattern were found and a message stating that will be

printed to the screen, including the value of Counter.

3.3.4 Refinement of the TXL Rules

After and during the creation of the TXL rules we continuously run the TXL programs

against actual Java source code examples found in the text “Patterns in Java Vol. 1” [Gra02].

We used a Java source code example corresponding to each of the concurrency design pat-

terns described in Section 2.2. The only one of these Java source code examples not obtained

from the text was the one corresponding to the Single Threaded Execution design pattern.

This is because the Single Threaded Execution design pattern does not have the complexity

of the other 7 concurrency design patterns we are targeting and can be very easily created

(see Figure 2.1 for an example).

Using this process we were able to constantly refine our TXL programs and the TXL

rules contained within them, to enable the detection of more Java construct variations for

the various design pattern roles. In our refinement of the TXL rules, we not only looked to

make the TXL program more general but also wanted to reduce the rate of false positives.

As mentioned in Section 3.3.3, find1stSynchMethod2 and find2ndSynchMethod2 rules are

3.3. APPROACH 56

rule f ind1stSynchMethod2
construct THIS [exp r e s s i on]

' t h i s
replace [method dec larat ion]

RM [repeat mod i f i e r] TS [t y p e s p e c i f i e r] MD [method dec larator]
OT [opt throws] MB [method body]

deconstruct MB
BL [block]

deconstruct BL
'{
RDS [repeat de c l a r a t i on o r s t a t emen t]

'}
deconstruct RDS

STMT [statement]
RDS2 [repeat de c l a r a t i on o r s t a t emen t]

deconstruct STMT
SSTMT [synchron ized statement]

deconstruct SSTMT
' synchron ized ' (EX [exp r e s s i on] ')
BL2 [b lock]

where
EX [isMethodSynchdUsingThis THIS]

deconstruct BL2
'{

RDS3 [repeat de c l a r a t i on o r s t a t emen t]
'}

construct InstanceFound [repeat de c l a r a t i on o r s t a t emen t]
RDS3 [hasNot i fyOrNot i fyAl l MD]

by
'MUTATED RM TS MD OT MB

end rule

Figure 3.21: Illustration of the find1stSynchMethod2 rule

variations of find1stSynchMethod1 and find2ndSynchMethod1 respectively. These came about

due to a need to refine the matching for a synchronized method. The initial variations

simply searched for the Java construct synchronized in the method declaration.

After running our TXL program against other examples of the Guarded Suspension

design pattern and failing to find a match, we realized that it was because the methods

were being guarded differently. Instead of the Java construct synchronized appearing in the

method declaration, it was the Java construct this that was being synchronized. this was

basically a reference to the method itself. Figures 3.21 and 3.22 illustrate this refinement

in the form of the rules find1stSynchMethod2 and find2ndSynchMethod2 respectively.

3.3. APPROACH 57

rule find2ndSynchMethod2
construct THIS [exp r e s s i on]

' t h i s
replace [method dec larat ion]

RM [repeat mod i f i e r] TS [t y p e s p e c i f i e r] MD [method dec larator]
OT [opt throws] MB [method body]

deconstruct MB
BL [block]

deconstruct BL
'{
RDS [repeat de c l a r a t i on o r s t a t emen t]

'}
deconstruct RDS

STMT [statement]
RDS2 [repeat de c l a r a t i on o r s t a t emen t]

deconstruct STMT
SSTMT [synchron ized statement]

deconstruct SSTMT
' synchron ized ' (EX [exp r e s s i on] ')
BL2 [b lock]

where
EX [isMethodSynchdUsingThis THIS]

deconstruct BL2
'{

RDS3 [repeat de c l a r a t i on o r s t a t emen t]
'}

construct InstanceFound [repeat de c l a r a t i on o r s t a t emen t]
RDS3 [isWhileLpWait MD] [isDoWhileLpWait MD]

by
'MUTATED RM TS MD OT MB

end rule

Figure 3.22: Illustration of the find2ndSynchMethod2 rule

Figure 3.23 illustrates the isDoWhileLpWait rule which as mentioned earlier is a refinement

of the isWhileLpWait rule. As was the case for find1stSynchMethod1 and find2ndSynchMethod1,

after running our program against more examples, we determined that the Guarded Sus-

pension design pattern’s role 2a, a loop, could occur in various forms. Initially we had just

one TXL rule that detected a while statement, as shown in Figure 3.16. So, we created an

additional rule, isDoWhileLpWait, as a refinement and variation of it, allowing for do-while

loops as well.

3.3. APPROACH 58

rule isDoWhileLpWait MD [method dec larator]
replace [do statement]

'do
STMT [statement]

' whi le ' (EX [exp r e s s i on] ') ' ;
construct waitStmt [statement]

'wait () ;
import numVarsIDCollection [repeat id]
where

STMT [hasStmt waitStmt] [hasWaitStmt each numVarsIDCollection]

construct InstanceFound [method dec larator]
MD [completeStats MD EX]

by
'MUTATED
'do
{

STMT
}
' whi le ' (EX ') ' ;

end rule

Figure 3.23: Illustration of the isDoWhileLpWait rule

3.4. SUMMARY 59

3.4 Summary

In this chapter we have used the Guarded Suspension design pattern as a running example

to illustrate how and why we created the TXL rules; and how these rules corresponded to

the roles that we initially identified. We followed the very same process in creating TXL

programs for the other seven concurrency design patterns described in Section 3.1. Similar

refinements as described in Section 3.3.4 were also required on these seven concurrency

design pattern TXL programs after running them against their corresponding Java source

code examples.

After numerous updates to our TXL programs we were able to detect all 8 of our targeted

concurrency design patterns named earlier in Section 3.1. The next step in our research

was to add Java annotations to our Java source code examples using the transformative

features of TXL. Adding Java annotations would complete the identification aspect of our

research by pointing out, right in the source code, where the various roles that comprise

the design patterns exist. This stage in our research will be discussed in Chapter 4.

60

Chapter 4

Annotation of Design Patterns

4.1 Overview

After completing the development and necessary refinements for the detection of the con-

currency design patterns in the Java source code, as discussed in Chapter 3, we proceeded

to modify our TXL programs to enable them to actually transform the Java source code

examples by adding commented Java annotations to them.

These commented Java annotations identify specifically where in the Java source code

the various concurrency design pattern roles that constitute the respective concurrency

design patterns exist. Before discussing the implementation of the commented Java anno-

tations in this chapter we will, in Section 4.2, illustrate the Java annotations we created

to identify the Guarded Suspension design pattern. A complete list of all the Java annota-

tions we created for all 8 of the concurrency design patterns we targeted, can be found in

Appendix B.

Further in Section 4.2, we will illustrate one of our Java source code examples that has

been transformed by our TXL rules and now has Java annotations added to identify the

presence of a concurrency design pattern and it’s roles, specifically the Guarded Suspension

design pattern. In Section 4.3, we will discuss our implementation of the commented Java

4.2. ANNOTATION SPECIFICATIONS 61

annotations in the Java source code using TXL and then finally end with a summary of

this chapter.

4.2 Annotation Specifications

The custom Java annotations we created, correspond directly to the concurrency design

pattern roles illustrated in the tables in Appendix A. Table 4.1 shows the annotation

specifications for the Guarded Suspension design pattern. As mentioned earlier, a complete

list of the Java annotations we created for all 8 of the concurrency design patterns we are

targeting is illustrated in the tables in Appendix B.

Table 4.1: Guarded Suspension Design Pattern Annotation Specifications

Role ID: Annotation:

1 @GuardendSuspensionPattern(ID=1,role=1,comment=“Ensuring a method
in the class is synchronized - guarded.”)

1a @GuardendSuspensionPattern(ID=1,role=1a,comment=“Ensure there is a
nofify() or notifyAll() statement.”)

2 @GuardendSuspensionPattern(ID=1,role=2,comment=“Ensuring a method
in the class is synchronized - guarded.”)

2a @GuardendSuspensionPattern(ID=1,role=2a,comment=“Ensuring there is
a while statement.”)

2aa @GuardendSuspensionPattern(ID=1,role=2aa,comment=“Ensuring there
is a wait() statement.”)

Figures 4.1 and 4.2 illustrate a Queue class that makes use of the Guarded Suspension

design pattern. Figure 4.1 is the class before the commented Java annotations have been

added and Figure 4.2 is the same class but after it has been parsed and transformed by our

TXL rules. The various roles that comprise the Guarded Suspension design pattern have

been identified and commented Java annotations have been inserted in the Java source code

to identify where specifically these roles exist within the code.

4.2. ANNOTATION SPECIFICATIONS 62

import java . u t i l . ArrayList ;

public class Queue {
private ArrayList data = new ArrayList () ;

synchronized public void put (Object obj) {
data . add (obj) ;
n o t i f y () ;

} // put (Object)

synchronized public Object get () {
while (data . s i z e () == 0) {

try {
wait () ;

} catch (Inter ruptedExcept ion e) {
} // t ry

} // wh i l e
Object obj = data . get (0) ;
data . remove (0) ;
return obj ;

} // ge t ()
} // c l a s s Queue

Figure 4.1: Illustration of the Guarded Suspension design pattern before Annotations

4.2. ANNOTATION SPECIFICATIONS 63

import java . u t i l . ArrayList ;

public class Queue {
private ArrayList data = new ArrayList () ;

/* ‘ ‘ @GuardedSuspensionPatternAnnotation (pat ternIns tanceID=1, ro leID=1, roleD
e s c r i p t i o n=‘Ensuring a method in the c l a s s i s synchronized − guarded ’) ” */

synchronized public void put (Object obj) {
data . add (obj) ;
/* ‘ ‘ @GuardedSuspensionPatternAnnotation (pat ternIns tanceID=1, ro leID=1a ,

ro l eDes c r i p t i on=‘Ensure there i s a no t i f y () or n o t i f yA l l () s tatement . ’) ” */
no t i f y () ;}

/* ‘ ‘ @GuardedSuspensionPatternAnnotation (pat ternIns tanceID=1, ro leID=2, roleD
e s c r i p t i o n=‘Ensuring a method in the c l a s s i s synchronized − guarded ’) ” */

synchronized public Object get () {

/* ‘ ‘ @GuardedSuspensionPatternAnnotation (pat ternIns tanceID=1, ro leID=2a ,
ro l eDes c r i p t i on=‘Ensuring there i s a wh i l e s tatement . ’) ” */

while (data . s i z e () == 0) {
{

try {
/* ‘ ‘ @GuardedSuspensionPatternAnnotation (pat ternIns tanceID=1, ro leID

=2aa ,
ro l eDes c r i p t i on=‘Ensuring there i s a wait () s tatement . ’) ” */
wait () ;} catch (Inter ruptedExcept ion e) {

}
}} Object obj = data . get (0) ;
data . remove (0) ; return obj ;

}
}

Figure 4.2: Illustration of the Guarded Suspension design pattern after Annotations

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 64

4.3 Implementing Commented Annotations using TXL

To add the commented Java annotations to the Java source code we further refined our TXL

rules to allow for the transformation of the Java source code. The transformation is basically

the addition of the commented Java annotations above the different Java constructs that

make up the different roles of the concurrency design pattern. We will illustrate this further

using the Guarded Suspension design pattern which we have already used in Chapter 3 to

illustrate various components of our technique.

4.3.1 TXL Rules adding Commented Java Annotations

These TXL rules are the same rules we described in Section 3.3.3 of this thesis, except

that they have now been refined to enable the adding of commented Java annotations

immediately above the areas where the design pattern roles have been detected in the Java

source code. In short these TXL rules have now been modified to add the commented Java

annotations above specific Java source code constructs to accurately identify exactly where

a design pattern role exists.

findGuardedSuspensionPattern rule

Figure 4.3 illustrates the refined version of Figure 3.11, the findGuardedSuspensionPat-

tern rule. Recall from Section 3.3.3 that it is from this rule that the other rules corre-

sponding to various Guarded Suspension design pattern roles emerge. Namely the follow-

ing four rules discussed in the next few sections: find1stSynchMethod1; find1stSynchMethod2;

find2ndSynchMethod1 and find2ndSynchMethod2.

Other rules emerge from these four rules and correspond to additional Guarded Suspen-

sion design pattern roles. All these rules, the part they play in adding the Java annotations

to the Java source code and in identifying the exact area where the design pattern roles

exist, will be elaborated on shortly in the next few sections.

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 65

rule f indGuardedSuspens ionPattern
replace [c l a s s d e c l a r a t i o n]

CH [c l a s s h e ad e r] CB [c l a s s body]
construct NumVarInstancesFound [c l a s s body]

CB [findAllNumberVars]
construct TransformedClassBody [c l a s s body]

CB [find1stSynchMethod1] [f ind1stSynchMethod2]
[find2ndSynchMethod1] [find2ndSynchMethod2]

import Counter [number]
where

Counter [> 0]
by

`MUTATED CH TransformedClassBody
end rule

Figure 4.3: Illustration of Transforming findGuardedSuspensionPattern rule

As illustrated in Figure 4.3, these four rules are passed the entire body of the class being

examined for the design pattern using the following TXL statement: CB [find1stSynchMethod1]

[find1stSynchMethod2] [find2ndSynchMethod1] [find2ndSynchMethod2].

These rules, as will be discussed shortly, transform the class body code by adding the

Java annotations. As shown in Figure 4.3, this transformed class body is assigned to a

newly constructed variable called TransformedClassBody. TransformedClassBody is then used in

the by section of the rule, replacing the original class body, CB.

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 66

find1stSynchMethod1 and find1stSynchMethod2 rules

These two rules are simply refinements of Figure 3.13 and 3.21, respectively. Figure 4.4

illustrates the refined rule find1stSynchMethod1. As discussed briefly earlier, the refinement

is to allow for these TXL rules to not only identify the respective roles that constitute the

design pattern, but also modify the Java source code to add Java annotations identifying

exactly where these roles (role 1 in the case of these two rules) that make up the Guarded

Suspension design pattern lie.

As discussed in Section 3.3.3, these two rules correspond to role 1 of the Guarded Sus-

pension design pattern which simply ensures that a method in the class is synchronized and

contains role 1a which, is a notify() or notifyAll() statement within the synchronized method.

The difference between these 2 rules (find1stSynchMethod1 and find1stSynchMethod2) is

that they simply handle the two different ways a synchronized method can be defined in

Java - also discussed earlier in Section 3.3.3.

If the Java method being examined meets all constraints within the TXL rule then

processing within the rule will continue through to the end and transform the method it is

working on by adding the commented Java annotations just above the method’s declaration.

The addition of the commented Java annotations is done at the end of the rule in the

by clause as illustrated in Figure 4.4. These constraints are established using the where

clauses within the rule. The constraints being checked for here are RM [isMethodSynchronized

SYNCH], and tmpRole1Passed [> 0]. As described earlier in Section 3.3.3, isMethodSynchronized

is a matching function that tries to establish whether the Java synchronized construct is

present in the variable being passed to it, in this case RM, which is a list of all the modifiers

in the method’s declaration. TXL variable tmpRole1Passed serves as a flag that is set in

the rule hasNotifyOrNotifyAll, if that rule succeeds. Rule hasNotifyOrNotifyAll is called from

within find1stSynchMethod1 and find1stSynchMethod2 but before this flag is checked. Rule

hasNotifyOrNotifyAll will be discussed in detail below.

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 67

rule f ind1stSynchMethod1
construct SYNCH [mod i f i e r]

` synchron ized
replace [method dec larat ion]

RM [repeat mod i f i e r] TS [t y p e s p e c i f i e r] MD [method dec larator]
OT [opt throws] MB [method body]

where
RM [isMethodSynchronized SYNCH]

deconstruct MB
BL2 [block]

deconstruct BL2
`{

RDS3 [repeat de c l a r a t i on o r s t a t emen t]
`}

construct TransformedRDS3 [repeat de c l a r a t i on o r s t a t emen t]
RDS3 [hasNot i fyOrNot i fyAl l MD]

import tmpRole1Passed [number]
where

tmpRole1Passed [> 0]
construct TransformedBL2 [b lock]

`{
TransformedRDS3

`}
construct TransformedMB [method body]

TransformedBL2
construct GuardedSuspensionAnnotation1pt1 [s t r i n g l i t]

``@GuardedSuspensionPatternAnnotation (patte rnInstance ID=”
cons t ruc t GuardedSuspensionAnnotation1pt2 [s t r i n g l i t]

`` , ro l e ID=1, r o l eDe s c r i p t i o n=`Ensuring a method in the c l a s s i s synchron ized −
guarded ') ”

import CountFirstSynchMethIDs [number]
export tmpRole1Passed

0
by

`MUTATED /* GuardedSuspensionAnnotation1pt1 [+ CountFirstSynchMethIDs]
[+ GuardedSuspensionAnnotation1pt2] */ RM TS MD OT TransformedMB

end rule

Figure 4.4: Illustration of Transforming find1stSynchMethod1 rule

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 68

hasNotifyOrNotifyAll rule

This rule hasNotifyOrNotifyAll corresponds to and identifies Role 1a, the presence of a notify()

or notifyAll() statement. Rule hasNotifyOrNotifyAll is illustrated in Figure 4.5 (continued in

Figure 4.6) and is a refinement of the one illustrated in Figure 3.14.

As mentioned earlier, the hasNotifyOrNotifyAll rule is called from the find1stSynchMethod1

and find1stSynchMethod2 rules. It checks for the existence of the notify() or notifyAll() state-

ments within the synchronized method. The existence of either one of these 2 Java con-

structs is established using AE [isAssignmentExpr idNotifyExpr] [isAssignmentExpr idNotifyAllExpr]

in the where clause in this rule, illustrated in Figure 4.5 (continued in Figure 4.6). Function

isAssignmentExpr is a matching function that checks for the assignment expression passed to

it, in this case notify() or notifyAll().

If this constraint - the check for notify() or notifyAll() - is passed then processing in this

rule is passed down to where the expression is transformed by adding the commented Java

annotations. This is similar to what has been discussed in the previous section and will also

occur in the next couple of rules to be discussed.

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 69

rule hasNot i fyOrNot i fyAl l MD [method dec larator]
replace [e xp r e s s i on s ta t ement]

EX [exp r e s s i on] ` ;
construct i dNot i f y [id]

` no t i f y
construct i dNo t i f yA l l [id]

` no t i f yA l l
construct idNot i fyExpr [a s s i gnment expre s s i on]

` no t i f y ()
construct idNot i fyAl lExpr [a s s i gnment expre s s i on]

` no t i f yA l l ()
deconstruct EX

AE [as s i gnment expre s s i on]
where

AE [isAssignmentExpr idNot i fyExpr] [isAssignmentExpr idNot i fyAl lExpr]
deconstruct MD

MN [method name] `(LFP [l i s t formal parameter] `) RD [repeat dimension]
deconstruct MN

DN [declared name]
deconstruct DN

methodID [id] OGP [opt gener i c paramete r]

Figure 4.5: Illustration of Transforming hasNotifyOrNotifyAll rule

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 70

import FirstSynchMethIDs [repeat id]
construct newMethodIDs [repeat id]

FirstSynchMethIDs [. methodID]
export FirstSynchMethIDs

newMethodIDs
import CountFirstSynchMethIDs [number]
construct PlusOne [number]

1
construct NewCount [number]

CountFirstSynchMethIDs [+ PlusOne]
export CountFirstSynchMethIDs

NewCount
import no t i f yCo l l e c t i o n [repeat exp r e s s i on]
construct newNot i fyCo l l e c t i on [repeat exp r e s s i on]

n o t i f yCo l l e c t i o n [. EX]
export no t i f yCo l l e c t i o n

newNot i fyCo l l e c t i on
import tmpRole1Passed [number]
construct tmpCount [number]

tmpRole1Passed [+ PlusOne]
export tmpRole1Passed

tmpCount
construct GuardedSuspensionAnnotation1apt1 [s t r i n g l i t]

``@GuardedSuspensionPatternAnnotation (patternInstance ID=”
cons t ruc t GuardedSuspensionAnnotation1apt2 [s t r i n g l i t]

`` , ro l e ID=1a , r o l eDe s c r i p t i o n=`Ensure the re i s a no t i f y () or n o t i f yA l l ()
statement . ') ”

by
`MUTATED
/* GuardedSuspensionAnnotation1apt1 [+ CountFirstSynchMethIDs]

[+ GuardedSuspensionAnnotation1apt2] */
EX ` ;

end rule

Figure 4.6: Illustration of Transforming hasNotifyOrNotifyAll rule Continued

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 71

rule find2ndSynchMethod1
construct SYNCH [mod i f i e r]

` synchron ized
replace [method dec larat ion]

RM [repeat mod i f i e r] TS [t y p e s p e c i f i e r] MD [method dec larator]
OT [opt throws] MB [method body]

where
RM [isMethodSynchronized SYNCH]

deconstruct MB
BL2 [block]

deconstruct BL2
`{

RDS3 [repeat de c l a r a t i on o r s t a t emen t]
`}

construct TransformedRDS3 [repeat de c l a r a t i on o r s t a t emen t]
RDS3 [isWhileLpWait MD] [isDoWhileLpWait MD]

import tmpRole2Passed [number]
where

tmpRole2Passed [> 0]
construct TransformedBL2 [b lock]

`{
TransformedRDS3

`}
construct TransformedMB [method body]

TransformedBL2
construct GuardedSuspensionAnnotation2pt1 [s t r i n g l i t]

``@GuardedSuspensionPatternAnnotation (patte rnInstance ID=”
cons t ruc t GuardedSuspensionAnnotation2pt2 [s t r i n g l i t]

`` , ro l e ID=2, r o l eDe s c r i p t i o n=`Ensuring a method in the c l a s s i s synchron ized −
guarded ') ”

import Counter [number]
export tmpRole2Passed

0
by

`MUTATED /* GuardedSuspensionAnnotation2pt1 [+ Counter]
[+ GuardedSuspensionAnnotation2pt2] */ RM TS MD OT TransformedMB

end rule

Figure 4.7: Illustration of Transforming find2ndSynchMethod1 rule

find2ndSynchMethod1 and find2ndSynchMethod2 rules

Like find1stSynchMethod1 and find1stSynchMethod2 rules discussed earlier, these 2 rules es-

tablish that a synchronized method exists. They are refinements of the same named rules

discussed in Section 3.3.3 that simply detected Role 2 (ensuring that a second method in the

class is synchronized) in the Java source code, but did not transform the Java source code by

adding annotations to specifically identify where the rule exists. Rule find2ndSynchMethod1

is illustrated in Figure 4.7.

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 72

These refined rules, find2ndSynchMethod1 and find2ndSynchMethod2, identify and add an-

notations to the second synchronized method required for the Guarded Suspension design

pattern to be identified. Like in find1stSynchMethod1 and find1stSynchMethod2, these 2 rules

differ only in that they handle the two different ways a synchronized method can be defined

in Java.

The rules find2ndSynchMethod1 and find2ndSynchMethod2 work very similarly to the rules

find1stSynchMethod1 and find1stSynchMethod2, discussed earlier, in terms of checking con-

straints and proceeding further in the rule to adding the commented Java annotations, if

those constraints are met. One of these constraints, tmpRole2Passed [> 0], that is checked

for in find2ndSynchMethod1 and find2ndSynchMethod2, is set in the rule completeStats, which

is called from within rules isWhileLpWait and isDoWhileLpWait, which in turn are called from

these 2 rules, find2ndSynchMethod1 and find2ndSynchMethod2.

isWhileLpWait and isDoWhileLpWait rules

These 2 rules, isWhileLpWait and isDoWhileLpWait, correspond to the Guarded Suspension

design pattern’s Roles 2a (ensuring there is a loop) and 2aa (ensuring that within that loop

there is a Java wait() statement). Like with the other rules described above, this rule is a

refinement of the same named rules discussed in Section 3.3.3. With this refinement being

the addition of TXL code to annotate the Java source code being examined. Both rules are

illustrated in Figures 4.8 and 4.9.

If a loop is found using either of these 2 rules and a Java wait() statement found using

the constraint STMT [hasStmt waitStmt] [hasWaitStmt each numVarsIDCollection], then the rule

will continue down to the transformation, creating the commented Java annotations and

adding them to the Java source code. If Role 2a and 2aa are established as discussed above

then 2 sets of commented Java annotations will be added. The first above the loop for Role

2a and the second above the statement where the Java wait() construct is, for Role 2aa.

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 73

rule isWhileLpWait MD [method dec larator]
replace [wh i l e s ta tement]

`whi le `(EX [exp r e s s i on] `)
STMT [statement]

construct waitStmt [statement]
`wait () ;

import numVarsIDCollection [repeat id]
where

STMT [hasStmt waitStmt] [hasWaitStmt each numVarsIDCollection]
construct GuardedSuspensionAnnotation2apt1 [s t r i n g l i t]

``@GuardedSuspensionPatternAnnotation (patte rnInstance ID=”
cons t ruc t GuardedSuspensionAnnotation2apt2 [s t r i n g l i t]

`` , ro l e ID=2a , r o l eDe s c r i p t i o n=`Ensuring the re i s a whi l e statement . ') ”
construct GuardedSuspensionAnnotation2aapt1 [s t r i n g l i t]

``@GuardedSuspensionPatternAnnotation (patte rnInstance ID=”
cons t ruc t GuardedSuspensionAnnotation2aapt2 [s t r i n g l i t]

`` , ro l e ID=2aa , r o l eDe s c r i p t i o n=`Ensuring the re i s a wait () statement . ') ”
construct InstanceFound [method dec larator]

MD [completeStats MD EX]
import Counter [number]
by

`MUTATED /* GuardedSuspensionAnnotation2apt1 [+ Counter]
[+ GuardedSuspensionAnnotation2apt2] */

`whi le `(EX `)
{

/* GuardedSuspensionAnnotation2aapt1 [+ Counter]
[+ GuardedSuspensionAnnotation2aapt2] */

STMT
}

end rule

Figure 4.8: Illustration of Transforming isWhileLpWait rule

4.3. IMPLEMENTING COMMENTED ANNOTATIONS USING TXL 74

rule isDoWhileLpWait MD [method dec larator]
replace [do statement]

`do
STMT [statement]

`whi le `(EX [exp r e s s i on] `) ` ;
construct waitStmt [statement]

`wait () ;
import numVarsIDCollection [repeat id]
where

STMT [hasStmt waitStmt] [hasWaitStmt each numVarsIDCollection]
construct GuardedSuspensionAnnotation2apt1 [s t r i n g l i t]

``@GuardedSuspensionPatternAnnotation (patte rnInstance ID=”
cons t ruc t GuardedSuspensionAnnotation2apt2 [s t r i n g l i t]

`` , ro l e ID=2a , r o l eDe s c r i p t i o n=`Ensuring the re i s a whi l e statement . ') ”
construct GuardedSuspensionAnnotation2aapt1 [s t r i n g l i t]

``@GuardedSuspensionPatternAnnotation (patte rnInstance ID=”
cons t ruc t GuardedSuspensionAnnotation2aapt2 [s t r i n g l i t]

`` , ro l e ID=2aa , r o l eDe s c r i p t i o n=`Ensuring the re i s a wait () statement . ') ”
construct InstanceFound [method dec larator]

MD [completeStats MD EX]
import Counter [number]
by

`MUTATED /* GuardedSuspensionAnnotation2apt1 [+ Counter]
[+ GuardedSuspensionAnnotation2apt2] */

`do
{

/* GuardedSuspensionAnnotation2aapt1 [+ Counter]
[+ GuardedSuspensionAnnotation2aapt2] */

STMT
}
`whi le `(EX `) ` ;

end rule

Figure 4.9: Illustration of Transforming isDoWhileLpWait rule

4.4. SUMMARY 75

4.4 Summary

In this chapter we have discussed how using our identification technique, we inserted com-

mented custom Java annotations to our Java source code examples, identifying the roles

that comprise the 8 different concurrency design patterns that we are targeting (see Sec-

tion 2.2.1 for a description of each concurrency design pattern). We started by defining the

custom Java annotations in Section 4.2. These Java annotations were created for each role

in each concurrency design pattern.

In Section 4.3 we discussed how we implemented these commented custom Java anno-

tations in our Java source code examples using TXL. To briefly reiterate, we refined the

same TXL rules we created to detect the concurrency design pattern roles, in Chapter 3, to

transform the Java source code, by adding the commented custom Java annotations where

a specific concurrency design pattern role was detected.

Adding the commented custom Java annotations to the Java source code when our 8

targeted concurrency design patterns are detected, is the last step in the identification of

each of the 8 concurrency design patterns. In Chapter 5, we will discuss how we evaluated

our detection and identification technique.

76

Chapter 5

Evaluation

5.1 Overview

In Chapters 3 and 4 we elaborated on our concurrency design pattern detection and identifi-

cation technique. We discussed how we run our 8 concurrency design pattern identification

programs on the 8 corresponding Java source code examples and in so doing refined our

programs ensuring that this detection and identification was successful. The 8 concurrency

design patterns we targeted are elaborated on in Section 2.2.

In this chapter we will discuss how we evaluated our 8 concurrency design pattern iden-

tification programs. In Section 5.2 we will elaborate on our evaluation procedure. We will

then give an in depth discussion on our results and how we obtained them, in Section 5.3.

We will also elaborate on how differences in the structural nature (“Structural patterns deal

with the composition of classes or objects” [GHJV95]) and behavioral nature (“Behavioral

patterns characterize the ways in which classes or objects interact and distribute responsi-

bility” [GHJV95]) of the different concurrency design patterns we targeted, influenced the

outcome of the results. We will end with a discussion of the possible threats to validity on

our evaluation methodology, in Section 5.4.

5.2. EVALUATION METHODOLOGY 77

5.2 Evaluation Methodology

The purpose of our evaluation is to establish how effective our static analysis technique is

at identifying concurrency design patterns. We run our concurrency design pattern iden-

tification programs against 17 other Java source code examples. To perform an unbiased

evaluation, we obtained these 17 examples from open source projects and from examples

developed by our colleagues independently.

In regards to the open source projects, we performed our evaluation on individual Java

files within the projects that utilized the 8 concurrency design patterns we were targeting

and not all the files in all the projects. Table 5.1 lists all 17 Java source code examples, the

concurrency design patterns expected and the sources from where they were obtained.

The experimental environment chosen for this evaluation was a single laptop machine

containing an Intel(R) Core(TM)2 Duo CPU P8600 with 2.4GHz and 2.39GHz processors

and 2.99GB of RAM. We followed the following steps in our evaluation methodology:

1. We automated the process by creating 8 batch files to run each of the 8 concurrency

design pattern identification programs.

2. We run each batch file against each of the 17 Java source code examples.

3. By running each concurrency design pattern identification program against each of

the 17 Java source code examples we were able to get a thorough analysis of the

effectiveness of our static analysis technique and it’s performance rate.

5.2. EVALUATION METHODOLOGY 78

T
a
b

le
5
.1

:
L

is
t

o
f

J
av

a
so

u
rc

e
co

d
e

ex
a
m

p
le

s
u

se
d

fo
r

E
va

lu
a
ti

o
n

E
x
a
m

p
le

s:
E

x
p

ec
te

d
C

on
cu

rr
en

cy
D

es
ig

n
P

at
te

rn
:

D
es

cr
ip

ti
on

(S
ou

rc
e)

:

V
ec

to
r.

ja
va

S
in

gl
e

T
h

re
ad

ed
E

x
ec

u
ti

on
F

ro
m

S
u

n
M

ic
ro

sy
st

em
s

so
u

rc
e

co
d

e
fo

r
ja

va
.u

ti
l.

V
ec

to
r

D
at

a
.j

av
a

B
al

k
in

g
F

ro
m

th
e

sv
n

at
h
tt

p
:/

/o
li

ve
rl

ee
.g

o
og

le
co

d
e.

co
m

/s
v
n

R
eq

u
es

tQ
u

eu
e.

ja
va

B
al

k
in

g
F

ro
m

th
e

sv
n

at
h
tt

p
:/

/o
li

ve
rl

ee
.g

o
og

le
co

d
e.

co
m

/s
v
n

R
eq

u
es

tQ
u

eu
e2

.j
av

a
B

al
k
in

g
F

ro
m

th
e

sv
n

at
h
tt

p
:/

/o
li

ve
rl

ee
.g

o
og

le
co

d
e.

co
m

/s
v
n

S
av

er
T

h
re

ad
.j

av
a

B
al

k
in

g
F

ro
m

th
e

sv
n

at
h
tt

p
:/

/o
li

ve
rl

ee
.g

o
og

le
co

d
e.

co
m

/s
v
n

C
h

a
n

ge
rT

h
re

a
d

.j
av

a
B

al
k
in

g
F

ro
m

th
e

sv
n

at
h
tt

p
:/

/o
li

ve
rl

ee
.g

o
og

le
co

d
e.

co
m

/s
v
n

R
ea

d
W

ri
te

L
o
ck

T
X

L
E

va
l.

ja
va

R
ea

d
/W

ri
te

L
o
ck

C
o
d

ed
b
y

fe
ll

ow
st

u
d

en
t

K
ev

in
J
al

b
er

t

B
lo

ck
in

g
Q

u
eu

e.
ja

va
G

u
ar

d
ed

S
u

sp
en

si
on

F
ro

m
p

ac
ka

ge
n

l.
ju

st
ob

je
ct

s.
p

u
sh

le
t.

co
re

fo
u

n
d

at
h
tt

p
:/

/w
w

w
.p

u
sh

le
ts

.c
om

/s
rc

/i
n

d
ex

.h
tm

l

E
ve

n
tQ

u
eu

e.
ja

va
G

u
ar

d
ed

S
u

sp
en

si
on

F
ro

m
p

ac
ka

ge
n

l.
ju

st
ob

je
ct

s.
p

u
sh

le
t.

co
re

fo
u

n
d

at
h
tt

p
:/

/w
w

w
.p

u
sh

le
ts

.c
om

/s
rc

/i
n

d
ex

.h
tm

l

R
eq

u
es

tQ
u

eu
e3

.j
av

a
G

u
ar

d
ed

S
u

sp
en

si
on

F
ro

m
th

e
sv

n
at

h
tt

p
:/

/o
li

ve
rl

ee
.g

o
og

le
co

d
e.

co
m

/s
v
n

S
er

ve
rT

h
re

ad
.j

av
a

G
u

ar
d

ed
S

u
sp

en
si

on
F

ro
m

th
e

sv
n

at
h
tt

p
:/

/o
li

ve
rl

ee
.g

o
og

le
co

d
e.

co
m

/s
v
n

C
a
n

ce
ll

ab
le

T
h

re
a
d

.j
av

a
T

w
o

P
h

as
e

T
er

m
in

at
io

n
F

ro
m

p
ac

ka
ge

O
R

G
.o

cl
c.

u
ti

l
fo

u
n

d
at

h
tt

p
:/

/o
p

en
si

te
se

ar
ch

.s
ou

rc
ef

or
ge

.n
et

/d
o
cs

/
h

el
p

zo
n

e/
ap

i/
ov

er
v
ie

w
-s

u
m

m
ar

y.
h
tm

l

C
o
m

p
on

en
t.

ja
va

L
o
ck

O
b

je
ct

F
ro

m
S

u
n

M
ic

ro
sy

st
em

s
so

u
rc

e
co

d
e

fo
r

p
ac

ka
ge

ja
va

.a
w

t

Q
u

eu
e.

ja
va

P
ro

d
u

ce
r

C
on

su
m

er
F

ro
m

p
ac

ka
ge

or
g.

ap
ac

h
e.

co
m

m
on

s.
th

re
ad

p
o
ol

fo
u

n
d

at
h
tt

p
:/

/c
om

m
on

s.
ap

ac
h

e.
or

g/
d

or
m

an
t/

th
re

ad
p

o
ol

/
ap

id
o
cs

/o
rg

/a
p

ac
h

e/
co

m
m

on
s/

th
re

ad
p

o
ol

/
p
ac

ka
ge

-
su

m
m

ar
y.

h
tm

l

M
T

Q
u

eu
e.

ja
va

P
ro

d
u

ce
r

C
on

su
m

er
F

ro
m

p
ac

ka
ge

or
g.

ex
op

la
tf

or
m

.s
er

v
ic

es
.t

h
re

ad
p

o
ol

.i
m

p
l

fo
u

n
d

at
h
tt

p
:/

/w
w

w
.c

li
ck

b
lo

ck
s.

or
g

P
ro

d
u

ce
rC

o
n

su
m

er
T

X
L

E
va

l.
ja

va
P

ro
d

u
ce

r
C

on
su

m
er

C
o
d

ed
b
y

fe
ll

ow
st

u
d

en
t

B
en

W
at

er
s

S
ch

ed
u

le
rT

X
L

E
va

l.
ja

va
S

ch
ed

u
le

r
C

o
d

ed
b
y

fe
ll

ow
st

u
d

en
t

D
av

e
K

el
k

5.3. RESULTS 79

5.3 Results

In discussing our results we will elaborate on 2 main areas, as enumerated below:

1. The effectiveness in identifying the 8 targeted concurrency design patterns.

2. Performance Rates of the TXL Programs.

5.3.1 Effectiveness in Identifying the Concurrency Design Patterns

In the sections that follow we will discuss the success and failure rates of each of our 8

concurrency design pattern detecting programs. We will elaborate on why our concurrency

design pattern detection programs were more successful at detecting and identifying certain

concurrency design patterns, than others.

Single Threaded Execution Design Pattern Success Rates

As discussed in Section 2.2.2 the Single Threaded Execution design pattern is used by

almost all the other concurrency design patterns and is hence the most present in our 17

Java source code examples. Of all the concurrency design patterns, the Single Threaded

Execution design pattern is also the most basic in structure. It has just one role and that is

for the method to be synchronized. For this reason it has one of the highest detection rates

using our static analysis technique. Table 5.2 shows the results from our TXL program’s

detection and identification of the Single Threaded Execution design pattern on the 17 java

source code examples.

As shown in the result table there were cases where the Single Threaded Execution

design pattern was not detected. After a manual walk through of the Java source code

examples and an in depth look at our TXL program, we discovered that we had not put

into consideration that the synchronized(this) statement can appear anywhere in the method

body in order for the method to be synchronized and hence be an instance of the Single

5.3. RESULTS 80

Threaded Execution design pattern. We had only put into consideration the scenario where

the synchronized(this) statement appears at the start of the method definition. Adjustments

to the TXL code to accommodate for this can be easily added.

Table 5.2: Single Threaded Execution Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 37 36 0 97 0 0

Data.java 2 2 0 100 0 0

RequestQueue.java 2 2 0 100 0 0

RequestQueue2.java 2 2 0 100 0 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 2 2 0 100 0 0

BlockingQueue.java 7 7 0 100 0 0

EventQueue.java 8 8 0 100 0 0

RequestQueue3.java 2 2 0 100 0 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 3 2 0 66 0 0

Component.java 44 32 0 73 0 0

Queue.java 5 5 0 100 0 0

MTQueue.java 4 4 0 100 0 0

ProducerConsumerTXLEval.java 2 2 0 100 0 0

SchedulerTXLEval.java 2 2 0 100 0 0

Total: 122 108 0 88.5 0 0

Balking Design Pattern Success Rates

The Balking design pattern is discussed in detail in Section 2.2.5 and details about the roles

that comprise it are shown in Section A.4 of the Appendix. In brief, the Balking design

pattern works at the method level and in order for it to be detected 3 roles must be satisfied,

namely:

5.3. RESULTS 81

1. Ensuring the method is synchronized - guarded.

2. Ensure an if statement that tests a flag right at the start of the synchronized method.

3. Ensuring an if statement or an else statement that tests the flag in 2 above does an

immediate return - balking.

Table 5.3 shows the results from running our Balking design pattern detecting program

against the 17 Java source code examples. Given the 3 roles required above only 1 of the

programs had an instance of the Balking design pattern and that 1 was successfully detected

and identified by the detecting program.

There were some interesting findings during the evaluation procedure for the Balking

design pattern:

1. RequestQueue.java and RequestQueue2.java ended up being correctly detected as

containing instances of the Guarded Suspension design pattern not the Balking de-

sign pattern despite the source (http://oliverlee.googlecode.com/svn) claiming that

balking design pattern instances exist in both.

2. Despite the source (http://oliverlee.googlecode.com/svn) claiming that the source

code files “SaverThread.java” and “ChangerThread.java” have instances of the Balk-

ing design pattern, none existed (determined by a manual walk through of the code)

and none were detected.

5.3. RESULTS 82

Table 5.3: Balking Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 0 0 - - - 0

Data.java 1 1 0 100 0 0

RequestQueue.java 0 0 - - - 0

RequestQueue2.java 0 0 - - - 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 0 0 - - - 0

BlockingQueue.java 0 0 - - - 0

EventQueue.java 0 0 - - - 0

RequestQueue3.java 0 0 - - - 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 0 0 - - - 0

Component.java 0 0 - - - 0

Queue.java 0 0 - - - 0

MTQueue.java 0 0 - - - 0

ProducerConsumerTXLEval.java 0 0 - - - 0

SchedulerTXLEval.java 0 0 - - - 0

Total: 1 1 0 100 0 0

Guarded Suspension Design Pattern Success Rates

Table 5.4 shows the results from running our Guarded Suspension design pattern detection

program on the 17 Java source code examples. The Guarded Suspension design pattern is

discussed in detail in Section 2.2.4 and all the roles that comprise it can be seen in Sec-

tion A.3 of the Appendix. In summary the Guarded Suspension design pattern encompasses

2 synchronized methods within a class. Each of which corresponds to the 2 main roles that

make up the design pattern. The first synchronized method (Role 1) will contain a notify()

or notifyAll() statment and the second synchronized method (Role 2) will contain a loop and

within the loop a wait() statement.

5.3. RESULTS 83

Table 5.4: Guarded Suspension Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 0 0 - - - 0

Data.java 0 0 - - - 0

RequestQueue.java 1 1 0 100 0 0

RequestQueue2.java 1 1 0 100 0 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 1 0 1 0 50 0

BlockingQueue.java 2 0 1 0 50 0

EventQueue.java 3 0 1 0 50 0

RequestQueue3.java 1 1 0 100 0 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 0 0 - - - 0

Component.java 0 0 - - - 0

Queue.java 1 1 0 100 0 0

MTQueue.java 0 0 - - - 0

ProducerConsumerTXLEval.java 0 0 - - - 0

SchedulerTXLEval.java 0 0 - - - 0

Total: 10 4 3 40 30 0

Before running our Guarded Suspension detection program against all 17 Java source

code examples, we manually analyzed the Java source code to determine the number of

Guarded Suspension instances detected. Table 5.4 illustrates this in the “Instances Present”

column. There were a total of ten instances of the Guarded Suspension design pattern

present, contained within seven of the programs. Four of these ten instances were detected

by our program. In some cases partial instances of the Guarded Suspension design pattern

were detected which, is also shown in Table 5.4.

For the three instances of the Guarded Suspension design pattern that were expected

but were not found we re-analyzed the code and made the following discoveries:

5.3. RESULTS 84

1. For the “ReadWriteLockTXLEval.java” program the synchronized method that should

have satisfied Role 2 of the Guarded Suspension design pattern, the wait() statement

that existed, was in the form this.wait() and yet our program was searching for specif-

ically a lone wait() statement. In this particular case our tool was a bit too rigid.

Adjustments in the TXL code can certainly be made to accommodate for this sce-

nario.

2. In the case of “BlockingQueue.java” and “EventQueue.java”, the 2 main roles that

comprise an instance of the Guarded Suspension design pattern are found within the

same methods. So, our detection program detects Role 1 only, each time it identifies

these methods and not Role 2 because the methods have already been mutated. As

discussed in Section 3.3.1, we mutate Java source code constructs that have been

identified as roles of the concurrency design pattern as they are detected. Because

these methods have already been detected as Role 1, they get mutated and hence will

not be analyzed again and not have their Role 2 aspects detected.

3. In all 3 Java source code examples discussed in 1 and 2 above, all Role 1s of the 2 roles

that comprise the Guarded Suspension design pattern were detected. So there was at

least a 50% match of the Guarded Suspension design pattern instances in these cases.

Lock Object Design Pattern Success Rates

Of the 17 Java source code examples we used to evaluate our technique, we were expecting

the Lock Object design pattern to exist in just one and this was identified correctly. The

Lock Object design pattern had a 100% success rate because it is more structural in nature

than most of the other concurrency design patterns we were targeting. Being more struc-

tural in nature makes it a more suitable candidate for identification using a static analysis

technique like ours. The results are shown in Table 5.5. The Lock Object design pattern is

described in detail in Section 2.2.3 and the roles that comprise it can be found in Section A.2

5.3. RESULTS 85

of the Appendix. In summary though, it is made up of 3 major roles:

1. Role 1: Lock object - a static object in the class.

2. Role 2: Lock object method - a static method in the same class as Role 1 which

returns an instance of the Lock object, Role 1.

3. Role 3: Synchronized calls to method Role 2. We consider each synchronized call to

the Role 2 method, an instance of the Lock Object design pattern.

Table 5.5: Lock Object Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 0 0 - - - 0

Data.java 0 0 - - - 0

RequestQueue.java 0 0 - - - 0

RequestQueue2.java 0 0 - - - 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 0 0 - - - 0

BlockingQueue.java 0 0 - - - 0

EventQueue.java 0 0 - - - 0

RequestQueue3.java 0 0 - - - 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 0 0 - - - 0

Component.java 36 36 0 100 0 0

Queue.java 0 0 - - - 0

MTQueue.java 0 0 - - - 0

ProducerConsumerTXLEval.java 0 0 - - - 0

SchedulerTXLEval.java 0 0 - - - 0

Total: 36 36 0 100 0 0

5.3. RESULTS 86

Producer Consumer Design Pattern Success Rates

The Producer Consumer design pattern is of a very behavioral nature and this explains the

low rate of identifying instances of it within the Java source code examples in which we

expected to find it. The results of our evaluation of the program identifying the Producer

Consumer design pattern can be found in Table 5.6. When a design pattern is more behav-

ioral in nature there tends to be a very large number of ways it can be applied. A dynamic

analysis technique would be more suited for more behavioral design patterns like this one.

Table 5.6: Producer Consumer Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 0 0 - - - 0

Data.java 0 0 - - - 0

RequestQueue.java 0 0 - - - 0

RequestQueue2.java 0 0 - - - 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 0 0 - - - 0

BlockingQueue.java 0 0 - - - 0

EventQueue.java 0 0 - - - 0

RequestQueue3.java 0 0 - - - 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 0 0 - - - 0

Component.java 0 0 - - - 0

Queue.java 1 0 1 0 33 0

MTQueue.java 1 0 1 0 33 0

ProducerConsumerTXLEval.java 1 0 0 0 0 0

SchedulerTXLEval.java 0 0 - - - 0

Total: 3 0 2 0 66.67 0

The Producer Consumer design pattern is comprised of 3 main roles which encompass 3

classes. These 3 roles are a Producer class, a Consumer class and a Queue class, all of which

5.3. RESULTS 87

interact with one another. A more detailed discussion of the Producer Consumer design

pattern can be found in Section 2.2.8 of this thesis. Details about these 3 roles and the

sub-roles within them can be found in Section A.7 of the Appendix. As mentioned above

there are numerous ways in which any of these 3 classes can be set up to interact with one

another. In our TXL program to identify the Producer Consumer design pattern we put

into consideration just a few of these ways.

Of the 3 Java source code examples in which we were expecting to find the Producer

Consumer design pattern, two of them - the “Queue.java” and “MTQueue.java” files -

comprise just the Queue class (Role 2) of the Producer Consumer design pattern which

is the most in depth of the 3 roles (see Section A.7 of the Appendix). Despite the highly

behavioral nature of this pattern, our Producer Consumer design pattern detection program

was able to successfully detect a structural aspect of this design pattern - Role 2a - in both.

Role 2a is the array list to house the produced objects and is 1 of the 3 sub-roles that

comprise Role 2. Our tool did not detect any part of the Producer Consumer design pattern

in “ProducerConsumerTXLEval.java”, which has 1 complete instance of it.

Read/Write Lock Design Pattern Success Rates

Like the Producer Consumer design pattern the Read/Write Lock design pattern is very

behavioral in nature. Because of this there was difficulty in identifying instances of it or even

partial instances of it in “ReadWriteLockTXLEval.java”. “ReadWriteLockTXLEval.java”

is the one example we manually analyzed and identified as having 1 complete instance

of the Read/Write Lock design pattern, but neither this instance nor any of its 3 roles

were detected by our program. Table 5.7 illustrates the results of our evaluation on the

Read/Write Lock design pattern detecting program.

The Read/Write Lock design pattern is comprised of 3 main roles corresponding to 3

methods all within 1 class. These are a ReadLock method, a WriteLock method and a Done

method. These 3 roles and the sub-roles under them are described in Section A.6 of the

5.3. RESULTS 88

Appendix. A full description of the Read/Write Lock design pattern and how it works is

described in Section 2.2.7.

Table 5.7: Read/Write Lock Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 0 0 - - - 0

Data.java 0 0 - - - 0

RequestQueue.java 0 0 - - - 0

RequestQueue2.java 0 0 - - - 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 1 0 0 0 0 0

BlockingQueue.java 0 0 - - - 0

EventQueue.java 0 0 - - - 0

RequestQueue3.java 0 0 - - - 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 0 0 - - - 0

Component.java 0 0 - - - 0

Queue.java 0 0 - - - 0

MTQueue.java 0 0 - - - 0

ProducerConsumerTXLEval.java 0 0 - - - 0

SchedulerTXLEval.java 0 0 - - - 0

Total: 1 0 0 0 0 0

Scheduler Design Pattern Success Rates

The Scheduler design pattern is another one of the concurrency design patterns that is

very behavioral in nature. Like in the Read/Write Lock design pattern and the Producer

Consumer design pattern before it, this certainly had an impact on the results. As explained

earlier, the more behavioral a pattern is, the more difficult it is to detect instances of it as

they are numerous varied ways that the behavioral pattern can be applied.

5.3. RESULTS 89

Like in the Producer Consumer design pattern and the Read/Write Lock design pattern

we targeted a few common ways that the design pattern can be applied however, like in

those same 2 patterns, the way the Scheduler design pattern was applied in the example

we used for this evaluation varied in many ways from the constructs we were targeting to

detect the design pattern in the example. Just so that we are clear, our technique targeted

one way in which the Scheduler design pattern can be applied whilst the Java source code

example had the Scheduler design pattern applied in a different manner.

Table 5.8: Scheduler Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 0 0 - - - 0

Data.java 0 0 - - - 0

RequestQueue.java 0 0 - - - 0

RequestQueue2.java 0 0 - - - 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 0 0 - - - 0

BlockingQueue.java 0 0 - - - 0

EventQueue.java 0 0 - - - 0

RequestQueue3.java 0 0 - - - 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 0 0 - - - 0

Component.java 0 0 - - - 0

Queue.java 0 0 - - - 0

MTQueue.java 0 0 - - - 0

ProducerConsumerTXLEval.java 0 0 - - - 0

SchedulerTXLEval.java 1 0 1 0 100 0

Total: 1 0 1 0 100 0

Table 5.8 shows our results regarding the program to detect the Scheduler design pattern.

Only “SchedulerTXLEval.java” had a complete instance of the Scheduler design pattern

5.3. RESULTS 90

and our program identified only it’s Role 3. A detailed description of the Scheduler design

pattern can be found in Section 2.2.6 and details about the 4 roles that comprise it can be

found in Section A.5 of the Appendix. However, to better understand our results, we will

summarize all 4 roles below:

1. Role 1: Scheduler class.

2. Role 2: Request class that implements the Schedule Ordering interface (Role 3).

3. Role 3: Schedule Ordering interface class (this was the only one identified).

4. Role 4: Processor class that delegates scheduling of the request object’s processing to

the Scheduler class, one at a time.

Two Phase Termination Design Pattern Success Rates

Like with the previous concurrency design patterns discussed, namely the Producer Con-

sumer design pattern, the Read/Write Lock design pattern and the Scheduler design pat-

tern, the Two Phase Termination design pattern is also very behavioral. As our results

in Table 5.9 show, no instances or even partial instances of the Two Phase Termination

design pattern were identified in “CancellableThread.java”. As shown in Table 5.1, “Can-

cellableThread.java” is the one Java source code example of the 17 we used that has 1

instance of the Two Phase Termination design patten.

Of the 8 design patterns we are targeting the Two Phase Termination is probably the

most varied in ways that in can be applied. A detailed description of this design pattern

can be found in Section 2.2.9. The Two Phase Termination design pattern can encompass

constructs within multiple classes, numerous methods within one class or just a few methods

within a class, so to try and statically identify all the varied forms this concurrency design

pattern can take is a huge challenge. Our selection of roles that make up the Two Phase

Termination design pattern is based on the example in the text [Gra02] which is a common

5.3. RESULTS 91

way to two-phase terminate a thread. These roles are elaborated on in Section A.8 of the

Appendix.

Table 5.9: Two Phase Termination Design Pattern Success Rates

Program: In-
stances
Pre-
sent:

Total
In-
stances
Found:

Partial
In-
stances
Found:

Total
Match
(%):

Partial
Match
(%):

False
Posi-
tives:

Vector.java 0 0 - - - 0

Data.java 0 0 - - - 0

RequestQueue.java 0 0 - - - 0

RequestQueue2.java 0 0 - - - 0

SaverThread.java 0 0 - - - 0

ChangerThread.java 0 0 - - - 0

ReadWriteLockTXLEval.java 0 0 - - - 0

BlockingQueue.java 0 0 - - - 0

EventQueue.java 0 0 - - - 0

RequestQueue3.java 0 0 - - - 0

ServerThread.java 0 0 - - - 0

CancellableThread.java 1 0 0 0 0 0

Component.java 0 0 - - - 0

Queue.java 0 0 - - - 0

MTQueue.java 0 0 - - - 0

ProducerConsumerTXLEval.java 0 0 - - - 0

SchedulerTXLEval.java 0 0 - - - 0

Total: 1 0 0 0 0 0

Summary of Results for the Concurrency Design Pattern Detection Programs

As noted in the results shown for the effectiveness of our technique in identifying the con-

currency design patterns, there were zero false positives. This result was mainly because we

pursued a more rigid rather than general approach in creating our TXL rules. Section 3.3

discusses our approach in more detail however, in brief, because our TXL rules were more

rigid in detecting the design pattern roles they ended up having no spurious results but

5.3. RESULTS 92

Figure 5.1: Illustration of our Concurrency Design Pattern Detection Results Summary

also ended up not detecting some instances of the design patterns that were present in

our examples. Figure 5.1 summarizes the detection results described above for all 8 of our

concurrency design pattern detection programs.

5.3.2 Performance Rates of the TXL Programs

In gathering our results we were also able to capture the performance i.e. the length of time

it took for each of our 8 programs to complete the analysis on each of the 17 Java source

code examples. Table 5.10 shows these results. The notable differences in the duration of

the running of the 8 concurrency design pattern detection programs against the Java source

code examples is when the size of the program came into play. The larger the Java source

code example, the longer it took our 8 detection programs to complete the identification

process.

5.3. RESULTS 93

T
a
b

le
5
.1

0
:

P
er

fo
rm

a
n

ce
R

a
te

s
o
f

C
o
n

cu
rr

en
cy

D
es

ig
n

P
a
tt

er
n

d
et

ec
ti

o
n

p
ro

g
ra

m
s

P
ro

g
ra

m
/

P
a
tt

er
n

D
et

ec
ti

o
n

T
o
ol

:
L

in
es

of C
o
d

e

S
in

gl
e

T
h

re
ad

ed
E

x
ec

u
-

ti
on

B
al

k
in

g
G

u
ar

d
ed

S
u

sp
en

-
si

on

L
o
ck

O
b

je
ct

P
ro

d
u

ce
r

C
on

-
su

m
er

R
ea

d
/

W
ri

te
L

o
ck

S
ch

ed
-

u
le

r
T

w
o

P
h

as
e

T
er

m
i-

n
at

io
n

V
ec

to
r.

ja
va

10
28

11
m

s
14

m
s

9m
s

12
m

s
12

m
s

13
m

s
15

m
s

13
m

s

D
at

a
.j

av
a

39
2m

s
2m

s
3m

s
2m

s
1m

s
3m

s
3m

s
3m

s

R
eq

u
es

tQ
u

eu
e.

ja
va

21
2m

s
3m

s
3m

s
3m

s
3m

s
3m

s
3m

s
1m

s

R
eq

u
es

tQ
u

eu
e2

.j
av

a
25

1m
s

1m
s

2m
s

3m
s

3m
s

3m
s

3m
s

1m
s

S
av

er
T

h
re

ad
.j

av
a

21
2m

s
3m

s
1m

s
2m

s
3m

s
4m

s
3m

s
2m

s

C
h

a
n

ge
rT

h
re

a
d

.j
av

a
24

1m
s

1m
s

1m
s

2m
s

3m
s

3m
s

3m
s

2m
s

R
ea

d
W

ri
te

L
o
ck

T
X

L
E

va
l.

ja
va

48
1m

s
2m

s
1m

s
2m

s
4m

s
4m

s
3m

s
2m

s

B
lo

ck
in

g
Q

u
eu

e.
ja

va
19

3
4m

s
3m

s
4m

s
3m

s
3m

s
3m

s
5m

s
3m

s

E
ve

n
tQ

u
eu

e.
ja

va
24

2
3m

s
3m

s
3m

s
5m

s
3m

s
4m

s
5m

s
3m

s

R
eq

u
es

tQ
u

eu
e3

.j
av

a
15

1m
s

5m
s

1m
s

2m
s

2m
s

3m
s

3m
s

1m
s

S
er

ve
rT

h
re

ad
.j

av
a

21
2m

s
1m

s
2m

s
3m

s
3m

s
4m

s
3m

s
3m

s

C
a
n

ce
ll

ab
le

T
h

re
a
d

.j
av

a
82

1m
s

3m
s

3m
s

3m
s

3m
s

3m
s

3m
s

1m
s

C
o
m

p
on

en
t.

ja
va

94
53

1s
14

m
s

1s
52

m
s

1s
31

m
s

1s
47

m
s

1s
44

m
s

1s
39

m
s

1s
27

m
s

1s
26

m
s

Q
u

eu
e.

ja
va

14
8

1m
s

2m
s

3m
s

3m
s

3m
s

3m
s

5m
s

3m
s

M
T

Q
u

eu
e.

ja
va

98
3m

s
3m

s
1m

s
3m

s
3m

s
3m

s
5m

s
3m

s

P
ro

d
u

ce
rC

o
n

su
m

er
T

X
L

E
va

l.
ja

va
55

2m
s

1m
s

3m
s

3m
s

3m
s

3m
s

3m
s

3m
s

S
ch

ed
u

le
rT

X
L

E
va

l.
ja

va
16

2
2m

s
3m

s
3m

s
1m

s
3m

s
5m

s
5m

s
3m

s

5.4. THREATS TO VALIDITY 94

5.4 Threats to Validity

The threats to the validity of our experiment fall under the category referred to as “external

validity” [WRH+00], which is defined as follows:

“The external validity is concerned with generalization. If there is a causal relationship

between the construct of the cause, and the effect, can the result of the study be gener-

alized outside the scope of our study? Is there a relation between the treatment and the

outcome?” [WRH+00]

There were two threats to the validity of the evaluation of our technique that fall under

the umbrella of external validity. These were related to those programs that could be

utilized for our evaluation:

1. Java test programs size:

The first threat was the size of our Java source code programs. As shown in table 5.10

the size of our test programs were relatively small. This was so mainly because we had

to perform a manual analysis of each to determine whether the various concurrency

design pattern roles actually existed within each program. Having smaller programs

was a more practical choice to make this exercise possible. Despite this we tried to

offset this threat by adding 2 relatively large Java programs, namely “Vector.java”

with 1028 lines of code and “Component.java” with 9453 lines of code.

2. Java test programs source:

The second threat to validity was that most of the 17 Java program examples we used

were from open source projects online. These open source Java programs represent

only a small subset of the kinds of concurrency Java programs that exist. There are nu-

merous concurrency Java programs used in industry and other areas that are not open

source and hence were not accessible to us. We tried offsetting this threat by having

5.5. SUMMARY 95

our colleagues create 3 of the test programs on their own, namely “ReadWriteLock-

TXLEval.java”, “ProducerConsumerTXLEval.java” and “SchedulerTXLEval.java”.

5.5 Summary

In this chapter we have elaborated on the evaluation of our technique in identifying concur-

rency design patterns in Java source code. We discussed the methodology of our evaluation

in Section 5.2 and then proceeded to have an in depth discussion of our results in Section 5.3.

We ended with a discussion on the threats to the validity of our evaluation in Section 5.4,

which included a discussion on how we tried to offset these threats.

The conclusion to our evaluation is that the more structural the concurrency design

pattern is, the greater the success in identifying the design pattern. As for the actual

performance of our 8 concurrency design pattern detection programs, as discussed in Sec-

tion 5.3.2, this seems to have varied greatly only with the difference in the sizes of the Java

test programs. The more lines of code the Java program had, the longer the processing

time, but even then the processing for the largest program was under 2 seconds, which in

our opinion is a rather fast processing time considering this program, Component.java, had

over 9453 lines of code.

96

Chapter 6

Conclusion and Future Work

6.1 Overview

Our research into identifying and annotating concurrency design patterns in Java source

code was quite challenging but both very exciting and fruitful. In Chapter 1 we started by

elaborating on what our motive was in pursuing our research area. We proceeded in the

same chapter to discuss the problem at hand and hypothesize on it.

In Chapter 2 we gave a detailed background into exactly what concurrency design pat-

terns are. We elaborated and illustrated examples on each of the 8 concurrency design

patterns that we are targeting, namely:

1. Single Threaded Execution (also called Critical Section)

2. Lock Object

3. Guarded Suspension

4. Balking

5. Scheduler

6. Read/Write Lock

7. Producer-Consumer

8. Two-Phase Termination

6.1. OVERVIEW 97

In Chapter 2 we gave a background into what Java annotations are. We discussed 4

existing design pattern detection techniques that use Java annotations. We elaborated on

the purpose of each technique and how the Java annotations were implemented in each tech-

nique. We also discussed why we chose to implement the Java annotations as commented

Java annotations due to various custom Java annotation shortcomings.

In Chapter 3 is where we thoroughly discussed our technique in detecting concurrency

design patterns in Java source code. We gave an in depth background into the TXL lan-

guage, explaining how it works, important aspects of it and why it was the ideal choice for

what we were trying to achieve. We also discussed our approach in detecting the concur-

rency design patterns using TXL. This included a discussion into how we identified the roles

that comprise each of the 8 concurrency design patterns, how we created the TXL rules to

correspond to each of the respective roles that comprise the individual concurrency design

patterns and how we refined the TXL rules after running them repetitively on examples of

the respective concurrency design patterns from [Gra02].

In Chapter 4 we went on to discuss the final parts of our identification of concurrency

design patterns technique. We started by elaborating on all the Java annotations we created

to correspond to each of the roles that comprise the 8 different concurrency design patterns

we were targeting. We then discussed how we actually implemented these Java annotations,

commented, into the Java source code using TXL.

Chapter 5 is where we discussed in detail the evaluation of our technique. This started

with a discussion on our evaluation methodology where amongst other procedural matters

we introduced our 17 Java source code examples. We then proceeded to discuss our results

from evaluating each of the 8 concurrency design pattern detection and identification pro-

grams on the 17 Java source code examples. This included success rates and performance

rates. We ended Chapter 5 with a discussion on the threats to the validity of our technique.

6.2. CONTRIBUTIONS 98

6.2 Contributions

We have made mainly 2 contributions to the Software Engineering community through our

research discussed in this thesis. These contributions are as follows:

1. Development of a novel technique for the detection and annotation of con-

currency design patterns:

Our main contribution is the creation of a novel technique to automatically identify

concurrency design patterns in Java source code. As discussed in Section 2.3 there

are just a few techniques that use Java annotations in identifying design patterns, but

even then we could not find any that targeted concurrent software design patterns

specifically.

As elaborated on in Section 1.1 of this thesis, the research into a technique to de-

tect concurrent software is very timely due to the growing importance of concurrent

software in Software Engineering. As discussed in Section 1.1, the maintenance of con-

current software is a rather arduous process. The identification of concurrent software

design patterns in concurrent software is a major step in easing the maintenance of it.

In Section 6.4 below, we introduce future work to further help in the maintenance of

concurrent software by checking to ensure that the commented Java annotations we

have introduced through our technique, match up to the Java source code constructs

they are annotating.

2. Identifying of limitations in using static analysis in concurrency design

pattern detection:

In working on this research we discovered that the differences in the structural and

behavioral aspects of concurrency design patterns should be a major determinant

in establishing the success (or failure) rate of a concurrency design pattern being

identified statically. A static analysis technique based on pattern matching like TXL,

6.3. LIMITATIONS 99

is best applied to identifying a more structural concurrency design pattern, whilst a

dynamic analysis technique is probably more suited to identifying the more behavioral

concurrent software design patterns.

This contribution was established in our evaluation of our static analysis technique

against the 8 concurrency software design patterns we targeted. Four of these were

more structural whilst the other 4 were more behavioral. We clearly showed in Sec-

tion 5.3 that the more structural the design pattern was the higher the success rate

of identifying it statically and the more behavioral it was the less the success rate.

6.3 Limitations

1. Because our technique in identifying concurrency design patterns was a static analysis

technique, it had a low success rate in identifying those concurrency design patterns

that were of a more behavioral variety. This is very clear in our results in Section 5.3

of this thesis.

2. As elaborated on in Section 3.2 of this thesis, TXL has many strengths that made it

an excellent choice for our concurrency design pattern identification technique how-

ever, TXL is limited in it’s syntax. Various constructs that are available in common

object oriented languages are lacking with TXL. For example if-statments and loops

that could offer great functionality are not available in TXL. We overcame syntax lim-

itations but with quite a bit of difficulty and a whole lot more code. This limitation

in TXL has been noted by it’s developers [TC06] and an updated version 10.5i was

launched in July 2011 [Lab], but unfortunately after we had already completed most

of the development on our TXL programs.

3. As shown in Chapter 3 another limitation is the tradeoff between either having our

concurrency design pattern detection programs being more rigid in their detection

6.3. LIMITATIONS 100

or more flexible. This affects our concurrency detection programs precision and re-

call [WF11]. This is especially true for concurrency design patterns that can be

implemented in a large variety of ways. In making the concurrency design pattern

detection programs more rigid they will be less capable of detecting the different ways

the concurrency design pattern can be detected hence will detect less instances of the

concurrency design patterns (high precision but low recall). In making the programs

more flexible they will detect more instances of the concurrency design patterns but

with also a higher rate of false positives (high recall but low precision).

Adjustments to the precision and recall of the concurrency design pattern detection

programs can be done by either making updates to the grammar that defines the

various Java elements or making updates to the specific rules we created to correspond

to the various concurrency design pattern roles.

As elaborated earlier in Section 3.2.1 updates to the grammar can be done by using

TXL’s redefine construct to change the definition of various Java elements to ease

the process of detecting the various ways a concurrency design pattern role can be

defined. For example the Java element synchronized could be redefined to not only be

synchronized but also synchronized(this).

Making updates to the rule would involve either reducing the number of Java elements

being searched for in the detection process (which would increase the recall but re-

duce precision) or increasing the number of Java constructs being searched for (hence

increasing the precision but reducing the recall).

6.4. FUTURE WORK 101

6.4 Future Work

6.4.1 Identification of additional concurrency design patterns

As discussed in Section 2.2.1 of this thesis, for the purposes of illustrating our technique we

targeted 8 concurrency design patterns. There are other concurrency design patterns that

have been established and we would like to add these to the list of those to be identified. In

addition to this, for the concurrency design patterns that are more behavioral, we would like

to gather more ways that they are applied and add this to our detection and identification

programs so that we can improve on the low success rates in identifying them.

6.4.2 Uncomment and use the Java Annotations after JSR 308

Recall our discussion in Section 2.3.1 of this thesis, regarding the lack of Java annotation

capability at the statement level of Java source code and how hopefully when JSR 308

becomes supported by Java, these Java annotations will be enabled at the statement level.

When JSR 308 passes we would like to modify our concurrency design pattern identification

programs to have the commented Java annotations added but uncommented. We would

then create a Java program and use Java’s reflection [McC98] capability to help with the

maintenance of the concurrency design patterns within the Java source code.

6.4.3 Maintenance of Concurrency Design Patterns in Java source code

As discussed briefly in Section 6.2 above we would like to expound on our technique to not

only identify the concurrency design patterns but to also detect and report if established ones

have been broken. This can be achieved by creating TXL programs for each concurrency

design pattern that correspond to the ones we created to detect the respective concurrency

design patterns.

These new TXL programs will attempt to match the commented Java annotations to

the Java constructs being annotated. These commented Java annotations would have been

6.5. CONCLUSION 102

added by the original technique to identify (as discussed in this thesis) the various roles

that make up the concurrency design pattern. If all or even some of the commented Java

annotations do not match the Java source code they are annotating, then that would mean

that the concurrency design pattern that was identified in the Java source initially, may be

broken.

6.5 Conclusion

In Section 6.1 we gave an overview of our research. Here we briefly summarized the no-

table items in the previous chapters of this thesis. We proceeded with a discussion of the

contributions we have made through this body of research in Section 6.2. In Section 6.3 we

discussed some limitations we experienced in our technique. We concluded with a discussion

on future work regarding our research into the identification of concurrency design patterns

in Java source code.

The identification of concurrency design patterns in not only Java source code but any

programming language that uses concurrency, can play a major part in the maintenance of

concurrent software. Concurrency design patterns as described in Section 1.1 offer a well

tried and tested starting point to developing error free concurrent software. To identify

these concurrency design patterns in a system and establish when they have been broken,

could in effect also reduce the proliferation of hard to find concurrency related bugs. As

shown in this thesis, our static analysis technique, can achieve this.

In conclusion and just to reiterate, the more structural the concurrency design pattern

is, the greater the success in identifying the design pattern. Of the 8 concurrency design

patterns that we targeted, the ones that were more structural (as described in Section 5.3),

had a higher success rate in being identified. These were:

1. Single Threaded Execution design pattern

2. Balking design pattern

6.5. CONCLUSION 103

3. Guarded Suspension design pattern

4. Lock Object design pattern

The more behavioral the concurrency design pattern is, the less the success rate in

identifying it. Of the 8 concurrency design patterns that we targeted, the more behavioral

ones (as described in Section 5.3) and hence the ones with very low success rates in being

even partially identified were:

1. Producer Consumer design pattern

2. Read/Write Lock design pattern

3. Scheduler design pattern

4. Two Phase Termination design pattern

BIBLIOGRAPHY 104

Bibliography

[CCH07] James R Cordy, Ian H Carmichael, and Russell Halliday. The TXL program-

ming language version 10.5. Technical report, Queen’s University, Novemeber

2007.

[Ern10] Michael D Ernst. Type annotations specification (JSR 308). Web page:

http://types.cs.washington.edu/jsr308/java-annotation-design.

html#other-annotations (last accessed: November 5, 2011), 2010.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Gra02] Mark Grand. Patterns in Java, Volume 1. Wiley Publishing, Inc., 2002.

[HLH06] Chengwan He, Zheng Li, and Keqing He. Identification and extraction of de-

sign pattern information in Java program. In Proc. of 9th ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing (SNPD ’08), page 828834, 2006.

[Jam05] Javid Jamae. Learn to use the new annotation feature of Java 5.0. Web

page: http://www.devx.com/Java/Article/27235/0/page/1 (last accessed:

November 5, 2011), 2005.

BIBLIOGRAPHY 105

[Lab] Software Technology Laboratory. Web page: http://www.txl.ca/index.html

(last accessed: November 5, 2011).

[McC98] Glen McCluskey. Using Java reflection. Web page: http://java.sun.com/

developer/technicalArticles/ALT/Reflection/ (last accessed: November

5, 2011), 1998.

[Mef06] Klaus Meffert. Supporting design patterns with annotations. In Proc. of 13th

Annual IEEE International Symposium and Workshop on Engineering of Com-

puter Based Systems, pages 437–445, 2006.

[Mic06] Sun Microsystems. JSR 175: A metadata facility for the Java programming

language. Web page: http://jcp.org/en/jsr/detail?id=175 (last accessed:

November 5, 2011), 2006.

[RPM08] Ghulam Rasool, Ilka Philippow, and Patrick Mader. Design pattern recovery

based on annotations. In Advances in Engineering Software, page 123, 2008.

[SP09] Miroslav Sabo and Jaroslav Poruban. Preserving design patterns using source

code annotations. In Journal of Computer Science, pages 519–526, 2009.

[TC06] Adrian D Thurston and James R Cordy. Evolving TXL. In Proc. of 6th Inter-

national Workshop on Source Code Analysis and Manipulation, Philadelphia,

September 2006, pages 117–126, 2006.

[WF11] Inc. Wikimedia Foundation. Precision and recall. Web page: http://

en.wikipedia.org/wiki/Precision_and_recall (last accessed: November 5,

2011), 2011.

[WRH+00] Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell,

and Anders Wesslen. Experimentation in Software Engineering An Introdution.

Kluwer Academic Publishers, 2000.

106

Appendix A

Summary of Concurrency Design

Pattern Roles

A.1 Single Threaded Execution Design Pattern

Table A.1: Single Threaded Execution Design Pattern Roles

Role ID: Role Description:

1 Use of the Synchronized keyword as one of the method declarations
modifiers. This is Java’s way of implementing a ”guarded method”.

A.2. LOCK OBJECT DESIGN PATTERN 107

A.2 Lock Object Design Pattern

Table A.2: Lock Object Design Pattern Roles

Role ID: Role Description:

1 Creation of a static object in a class - the Lock Object.

2 Creation of a static method in the same class as Role 1.

2a Return of the Role 1 Lock Object within the Role 2 method (hence the
reason it is 2a).

3 Synchronized calls to the Role 2 method.

A.3 Guarded Suspension Design Pattern

Table A.3: Guarded Suspension Design Pattern Roles

Role ID: Role Description:

1 Ensuring a method in the class is synchronized and contains Role 1a below.

1a Ensuring there is a notify() or notifyAll() statement within the Role 1 method.

2 Ensuring a method in the class is synchronized and contains Role 2a below.

2a Ensuring there is a loop within the Role 2 method and contains Role 2aa
below.

2aa Ensuring there is a wait() statement within the Role 2a loop.

A.4. BALKING DESIGN PATTERN 108

A.4 Balking Design Pattern

Table A.4: Balking Design Pattern Roles

Role ID: Role Description:

1 Ensuring a method in the class is synchronized.

2 Ensuring the Role 1 method contains an if-then or if-then-else statement
that tests a flag right at the start of the synchronized method.

3 Ensuring the Role 2 if statement or it’s ”else” does an immediate return
- the Balking.

A.5. SCHEDULER DESIGN PATTERN 109

A.5 Scheduler Design Pattern

Table A.5: Scheduler Design Pattern Roles

Role ID: Role Description:

1 Scheduler object class that contains Roles 1a and 1b below.

1a Method with a parameter that is an instance of ScheduleOrdering object
Role 3. Contains Roles 1aa,1ab, 1ac and 1ad.

1aa New thread creation outside of any critical section.

1ab Critical section creation by synchronization of this Scheduler object
Role 1. Contains Role 1aba below.

1aba Within Role 1ab a check to see whether the designated runningThread is
null. If true proceed with Role 1abaa and 1abab.
If false proceed with Role 1abac and 1abad.

1abaa Assign thread Role 1aa (current thread) to the designated runningThread.

1abab Return to calling Processor object Role 4.

1abac Add thread Role 1aa to the list of waiting threads.

1abad Add instance of ScheduleOrdering object Role 3 (that was passed into
method Role 1a) into the list of waiting SchedulingOrdering object requests.

1ac Critical section creation by synchronization of thread Role 1aa. Contains
Role 1aca.

1aca A loop within critical section Role 1ac to check if the new thread Role 1aa
is NOT the same as the designated runningThread. If true proceed with
Role 1acaa. If false then new thread Role 1aa is allowed to continue
to run and proceeds to Role 1ad.

1acaa New thread Role 1aa is placed in a waiting state until method Role 1b
wakes it up using notifyAll().

1ad Critical section creation by synchronization of this Scheduler object Role 1.
Contains Role 1ada. Contains Role 1adb.

1ada Remove current thread (Role 1aa) from the arraylist of waiting threads.

1adb Remove current instance of the requested ScheduleOrdering object (Role 3),
that was passed into method Role 1a, from the arraylist of waiting
SchedulingOrdering object requests. Corresponds to the list of waiting
threads.

1b Synchronized method called when the current thread is finished with
resource. Contains Role 1ba.

1ba Critical section creation by synchronization of thread Role 1aa.
Contains Role 1baa.

1baa notifyAll() to wake up other waiting threads.

A.5. SCHEDULER DESIGN PATTERN 110

Table A.6: Scheduler Design Pattern Roles Continued

Role ID: Role Description:

2 Request object - implements the ScheduleOrdering interface Role 3.

2a private boolean method that helps in determining the order in which the
request objects will occur.

3 Schedule Ordering interface implemented by the Role 2 Request object.
Contains Role 3a.

3a public boolean method that helps in determining the order in which the
request objects will occur.

4 Processor object - delegates scheduling of the request objects processing to
the Scheduler object one at a time. Contains Roles 4a and 4b.

4a Creation of an instance of the Scheduler object (Role 1) outside of any
method within Processor class (Role 4).

4b Method with a parameter that is an instance of the Request object (Role 2)
that carries out the main required functionality. Contains Role 4ba and 4bb.

4ba Call to the method (Role 1a) of the instance (Role 4a) of the Scheduler
object (Role 1). Occurs before any processing in method Role 4b

4bb Call to the method (Role 1b) of the instance (Role 4a) of the Scheduler
object (Role 1). Occurs after all processing in method Role 4b.

A.6. READ/WRITE LOCK DESIGN PATTERN 111

A.6 Read/Write Lock Design Pattern

Table A.7: Read/Write Lock Design Pattern Roles

Role ID: Role Description:

1 Synchronized method to issue a read lock. Contains Roles 1a and 1b.

1a Boolean check if the designated writeLockedThread has the write lock.
If true i.e. a thread has the write lock then processing continues to Role
1aa and then Role 1ab. If false then processing continues to 1b.

1aa Increment designated waitingForReadLock counter variable by 1.

1ab Loop iteratively checking if the designated writeLockedThread has the write
lock. As long as true i.e. a thread has the write lock Role 1aba occurs.
When condition becomes false processing continues to Role 1ac.

1aba wait() is called to pause further processing.

1ac Decrement designated waitingForReadLock counter variable by 1.

1b Increment designated outstandingReadLocks counter variable by 1.

A.6. READ/WRITE LOCK DESIGN PATTERN 112

Table A.8: Read/Write Lock Design Pattern Roles Continued

Role ID: Role Description:

2 Method to issue a write lock. Contains Roles 2a, 2b, 2c and 2d.

2a New thread creation outside of any critical section.

2b Critical section creation by synchronization of this writelock
method. Contains Role 2ba.

2ba Within Role 2b a check whether the designated writelockedthread is null
and designated outstandingReadLocks counter variable is zero. If true
proceed with Role 2baa and 2bab. If false proceed with Role 2bac and 2bad.

2baa Assign the current thread to the designated writelockedthread.

2bab Return to the calling object that is using this method Role 2
of an instance of this object Role 1.

2bac Make thread Role 2a the current thread.

2bad Add thread Role 2a to arraylist.

2c Critical section creation by synchronization of thread Role 2a.
Contains Role 2ca.

2ca A loop within critical section Role 2c to check if the new thread
Role 2a is NOT the same as the designated writelockedthread. If true
proceed with Role 2caa. If false then new thread Role 2a is allowed to
continue to run and proceeds to Role 2d.

2caa New thread Role 2a is placed in a waiting state until method Role
3 wakes it up using a notifyAll().

2d Critical section creation by synchronization of this writelock
method. Contains Role 2da.

2da Remove current thread (Role 2a) from the arraylist of waiting
threads.

3 Synchronized method called when the current thread is finished with
resource. Contains Role 3a.

3a notifyAll() to wake up other waiting threads.

A.7. PRODUCER-CONSUMER DESIGN PATTERN 113

A.7 Producer-Consumer Design Pattern

Table A.9: Producer-Consumer Design Pattern Roles

Role ID: Role Description:

1 Producer class - supply objects to be consumed by the Role 3, the
Consumer class. Contains Roles 1a, 1b and 1c.

1a Local instance of Role 2, the Queue.

1b Local instance of produced object.

1c Call to push method of Role 1a, the local instance of the Queue. Pushes
Role 1b, the produced object.

2 Queue class - buffer between producer and consumer classes. Contains
Roles 2a, 2b and 2c.

2a Array list to house the produced objects.

2b Synchronized method to push the produced objects into queue. Contains
Roles 2ba, 2bb and 2bc.

2ba One of the parameters of Role 2b must have produced object.

2bb Adding the produced object, Role 2ba to Role 2a, the arraylist.

2bc Notification that the thread has completed.

2c Synchronized method to pull the produced objects from queue to be
consumed. Contains Roles 2ca, 2cb, 2cc and 2cd.

2ca Loop to check if queue is empty by checking size of Role 2a.

2caa Wait statement.

2cb Creating instance of produced object and assigning it the 1st value
in the arraylist Role 2a.

2cc Remove the assigned value in Role 2cb from the arraylist Role 2a.

2cd Returning the produced object - to be consumed by Role 3.

3 Consumer class - use objects to be produced by the Role 1, the Producer
class. Contains Roles 3a, 3b and 3c.

3a Local instance of Role 2, the Queue.

3b Local instance of consumed object.

3c Call to pull method of Role 3a, the local instance of the Queue.
Pulls Role 3b, the object to be consumed.

A.8. TWO-PHASE TERMINATION DESIGN PATTERN 114

A.8 Two-Phase Termination Design Pattern

Table A.10: Two-Phase Termination Design Pattern Roles

Role ID: Role Description:

1 Thread(s) declaration - thread(s) that will be checked for an interrupt
in Role 2.

2 Method running the process. Contains Roles 2a and 2b.

2a In a loop checking the latch - thread in Role 1 being checked for
Role 2aa.

2aa Thread in Role 1 being checked if it has been interrupted.

2b After the loop, a call to Role 4 that shuts down the thread.

3 Method that will contain functionality to set the latch - interrupt the
thread in Role 1. Contains Role 3a.

3a Actually setting the latch to true - interrupting the thread in Role 1.

4 Method that will contain functionality to stop the thread in Role 1.
Contains Role 4a.

4a Actually stopping of the thread in Role 1.

115

Appendix B

Concurrency Design Pattern

Annotation Specifications

B.1 Single Threaded Execution Design Pattern

Table B.1: Single Threaded Execution Design Pattern Annotations

Role ID: Annotation:

1 @SingleThreadedExecutionPattern(ID=1,role=1,comment=“Method must
be synchronized”)

B.2. LOCK OBJECT DESIGN PATTERN 116

B.2 Lock Object Design Pattern

Table B.2: Lock Object Design Pattern Annotations

Role ID: Annotation:

1 @LockObjectPattern(ID=1,role=1,comment=“Creation of static object
in a class - Lock Object.”)

2 @LockObjectPattern(ID=1,role=2,comment=“Creation of static method
in the same class as Role 1 - getLockObject().”)

2a @LockObjectPattern(ID=1,role=2a,comment=“Return of Lock Object,
Role 1.”)

3 @LockObjectPattern(ID=1,role=3,comment=“Synchronized calls to
method Role 2.”)

B.3 Guarded Suspension Design Pattern

Table B.3: Guarded Suspension Design Pattern Annotations

Role ID: Annotation:

1 @GuardendSuspensionPattern(ID=1,role=1,comment=“Ensuring a method
in the class is synchronized - guarded.”)

1a @GuardendSuspensionPattern(ID=1,role=1a,comment=“Ensure there is a
nofify() or notifyAll() statement.”)

2 @GuardendSuspensionPattern(ID=1,role=2,comment=“Ensuring a method
in the class is synchronized - guarded.”)

2a @GuardendSuspensionPattern(ID=1,role=2a,comment=“Ensuring there is
a while statement.”)

2aa @GuardendSuspensionPattern(ID=1,role=2aa,comment=“Ensuring there
is a wait() statement.”)

B.4. BALKING DESIGN PATTERN 117

B.4 Balking Design Pattern

Table B.4: Balking Design Pattern Annotations

Role ID: Annotation:

1 @BalkingPattern(ID=1,role=1,comment=“Ensuring method is
synchronized - guarded.”)

2 @BalkingPattern(ID=1,role=2,comment=“Ensure an if statement that
tests a flag right at the start of the synchronized method.”)

3 @BalkingPattern(ID=1,role=3,comment=“Ensuring one of the if or else
tests of the flag in Role 2 does an immediate return - Balking.”)

B.5. SCHEDULER DESIGN PATTERN 118

B.5 Scheduler Design Pattern

Table B.5: Scheduler Design Pattern Annotations

Role ID: Annotation:

1 @SchedulerPattern(ID=1,role=1,comment=“Scheduler object/class.”)

1a @SchedulerPattern(ID=1,role=1a,comment=“Method with a parameter
that is an instance of ScheduleOrdering object Role 3.”)

1aa @SchedulerPattern(ID=1,role=1aa,comment=“New thread creation
outside of any critical section.”)

1ab @SchedulerPattern(ID=1,role=1ab,comment=“Critical section creation
by synchronization of this Scheduler object Role 1.”)

1aba @SchedulerPattern(ID=1,role=1aba,comment=“Within Role 1ab a check
to whether the designated runningThread is null.”)

1abaa @SchedulerPattern(ID=1,role=1abaa,comment=“Assign thread Role
1aa (current thread) to the designated runningThread.”)

1abab @SchedulerPattern(ID=1,role=1abab,comment=“Return to calling
Processor object Role 4.”)

1abac @SchedulerPattern(ID=1,role=1abac,comment=“Add thread Role 1aa
to the list of waiting threads.”)

1abad @SchedulerPattern(ID=1,role=1abad,comment=“Add instance of
ScheduleOrdering object Role 3 (that was passed into method Role 1a)
into the list of waiting SchedulingOrdering object requests.”)

1ac @SchedulerPattern(ID=1,role=1ac,comment=“Critical section creation
by synchronization of thread Role 1aa.”)

1aca @SchedulerPattern(ID=1,role=1aca,comment=“A loop within critical
section Role 1ac to check if the new thread Role 1aa is NOT the same
as the designated runningThread.”)

1acaa @SchedulerPattern(ID=1,role=1acaa,comment=“New thread Role 1aa
is placed in a waiting state until method Role 1b wakes it up using
nofityAll().”)

1ad @SchedulerPattern(ID=1,role=1ad,comment=“Critical section creation
by synchronization of this Scheduler object Role 1.”)

1ada @SchedulerPattern(ID=1,role=1ada,comment=“Remove current thread
(Role 1aa) from the list of waiting threads.”)

1adb @SchedulerPattern(ID=1,role=1adb,comment=“Remove current instance
of the requested ScheduleOrdering object (Role 3), that was passed
into method Role 1a, from the arraylist of waiting SchedulingOrdering
object requests. Correspond to the list of waiting threads.”)

B.5. SCHEDULER DESIGN PATTERN 119

Table B.6: Scheduler Design Pattern Annotations Continued

Role ID: Annotation:

1b @SchedulerPattern(ID=1,role=1b,comment=“Synchronized method called
when the current thread is finished with resource.”)

1ba @SchedulerPattern(ID=1,role=1ba,comment=“Critical section creation
by synchronization of thread Role 1aa.”)

1baa @SchedulerPattern(ID=1,role=1baa,comment=“NotifyAll to wake up
other waiting threads.”)

2 @SchedulerPattern(ID=1,role=2,comment=“Request object - implements
the ScheduleOrdering interface Role 3.”)

2a @SchedulerPattern(ID=1,role=2a,comment=“private boolean method that
helps in determining the order in which the request objects will occur.”)

3 @SchedulerPattern(ID=1,role=3,comment=“Schedule Ordering interface
implemented by the Role 2 Request object.”)

3a @SchedulerPattern(ID=1,role=3a,comment=“public boolean method that
helps in determining the order in which the request objects will occur.”)

4 @SchedulerPattern(ID=1,role=4,comment=“Processor object - delegates
scheduling of the request objects processing to the Scheduler object
one at a time.”)

4a @SchedulerPattern(ID=1,role=4a,comment=“Creation of an instance of
the Scheduler object (Role 1) outside of any method within Processor
class(Role 4).”)

4b @SchedulerPattern(ID=1,role=4b,comment=“Method with a parameter
that is an instance of the Request object (Role 2) that carries
out the main required functionality.”)

4ba @SchedulerPattern(ID=1,role=4ba,comment=“Call to the method (Role
1a) of the instance (Role 4a) of the Scheduler object (Role 1).
Occurs before any processing in method Role 4b.”)

4bb @SchedulerPattern(ID=1,role=4bb,comment=“Call to the method (Role
1b) of the instance (Role 4a) of the Scheduler object (Role 1).
Occurs after all processing in method Role 4b.”)

B.6. READ/WRITE LOCK DESIGN PATTERN 120

B.6 Read/Write Lock Design Pattern

Table B.7: Read/Write Lock Design Pattern Annotations

Role ID: Annotation:

1 @ReadWriteLockPattern(ID=1,role=1,comment=“Synchronized method
to issue a read lock.”)

1a @ReadWriteLockPattern(ID=1,role=1a,comment=“Boolean check if
the designated writelockedthread has the write lock.”)

1aa @ReadWriteLockPattern(ID=1,role=1aa,comment=“Increment
designated waitingForReadLock counter variable by 1.”)

1ab @ReadWriteLockPattern(ID=1,role=1ab,comment=“Loop iteratively
checking if the designated writeLockedThread has the write lock.”)

1aba @ReadWriteLockPattern(ID=1,role=1aba,comment=“wait() is called to
pause further processing.”)

1ac @ReadWriteLockPattern(ID=1,role=1ac,comment=“Decrement
designated waitingForReadLock counter variable by 1.”)

1b @ReadWriteLockPattern(ID=1,role=1b,comment=“Increment
designated outstandingReadLocks counter variable by 1.”)

B.6. READ/WRITE LOCK DESIGN PATTERN 121

Table B.8: Read/Write Lock Design Pattern Annotations Continued

Role ID: Annotation:

2 @ReadWriteLockPattern(ID=1,role=2,comment=“Method to issue a
write lock.”)

2a @ReadWriteLockPattern(ID=1,role=2a,comment=“New thread creation
outside of any critical section.”)

2b @ReadWriteLockPattern(ID=1,role=2b,comment=“Critical section
creation by synchronization of this writelock method.”)

2ba @ReadWriteLockPattern(ID=1,role=2ba,comment=“Within Role 2b a
check to whether the designated writeLockedThread is null and designated
outstandingReadLocks counter variable is zero.”)

2baa @ReadWriteLockPattern(ID=1,role=2baa,comment=“Assign the current
thread to the designated writeLockedThread.”)

2bab @ReadWriteLockPattern(ID=1,role=2bab,comment=“Return to the calling
object that is using this method Role 2 of an instance of this object
Role 1 .”)

2bac @ReadWriteLockPattern(ID=1,role=2bac,comment=“Make thread Role 2a
the current thread.”)

2bad @ReadWriteLockPattern(ID=1,role=2bad,comment=“Add thread Role 2a
to the arraylist.”)

2c @ReadWriteLockPattern(ID=1,role=2c,comment=“Critical section
creation by synchronization of thread Role 2a.”)

2ca @ReadWriteLockPattern(ID=1,role=2ca,comment=“A loop within critical
section Role 2c to check if the new thread Role 2a is NOT the same as
the designated writeLockedThread.”)

2caa @ReadWriteLockPattern(ID=1,role=2caa,comment=“New thread Role 2a
is placed in a waiting state until method Role 3 wakes it up using a
nofityAll().”)

2d @ReadWriteLockPattern(ID=1,role=2d,comment=“Critical section
creation by synchronization of this writelock method.”)

2da @ReadWriteLockPattern(ID=1,role=2da,comment=“Remove current
thread (Role 2a) from the arraylist of waiting threads.”)

3 @ReadWriteLockPattern(ID=1,role=3,comment=“Synchronized method
called when the current thread is finished with resource.”)

3a @ReadWriteLockPattern(ID=1,role=3a,comment=“NotifyAll to wake up
other waiting threads.”)

B.7. PRODUCER-CONSUMER DESIGN PATTERN 122

B.7 Producer-Consumer Design Pattern

Table B.9: Producer-Consumer Design Pattern Annotations

Role ID: Annotation:

1 @ProducerConsumerPattern(ID=1,role=1,comment=“Producer class -
supply objects to be consumed by the Role 3, the Consumer class.”)

1a @ProducerConsumerPattern(ID=1,role=1a,comment=“Local instance of
Role 2, the Queue.”)

1b @ProducerConsumerPattern(ID=1,role=1b,comment=“Local instance of
produced object.”)

1c @ProducerConsumerPattern(ID=1,role=1c,comment=“Call to push method
of Role 1a, the local instance of the Queue. Pushes Role 1b, the produced
object.”)

2 @ProducerConsumerPattern(ID=1,role=2,comment=“Queue class - buffer
between producer and consumer classes.”)

2a @ProducerConsumerPattern(ID=1,role=2a,comment=“Array list to house
the produced objects.”)

2b @ProducerConsumerPattern(ID=1,role=2b,comment=“Synchronized
method to push the produced objects into queue.”)

2ba @ProducerConsumerPattern(ID=1,role=2ba,comment=“One of the
parameters of Role 2b must have produced object.”)

2bb @ProducerConsumerPattern(ID=1,role=2bb,comment=“Adding the
produced object, Role 2ba to Role 2a, the arraylist.”)

2bc @ProducerConsumerPattern(ID=1,role=2bc,comment=“Nofification that
the thread has completed.”)

2c @ProducerConsumerPattern(ID=1,role=2c,comment=“Synchronized
method to pull the produced objects from queue to be consumed.”)

2ca @ProducerConsumerPattern(ID=1,role=2ca,comment=“Loop to check if
queue is empty by checking size of Role 2a.”)

2caa @ProducerConsumerPattern(ID=1,role=2caa,comment=“Wait statement.”)

2cb @ProducerConsumerPattern(ID=1,role=2cb,comment=“Creating instance
of produced object and assigning it the 1st value in the arraylist Role 2a.”)

2cc @ProducerConsumerPattern(ID=1,role=2cc,comment=“Remove the
assigned value in Role 2cb from the arraylist Role 2a.”)

2cd @ProducerConsumerPattern(ID=1,role=2cd,comment=“Returning the
produced object - to be consumed by Role 3.”)

B.8. TWO-PHASE TERMINATION DESIGN PATTERN 123

Table B.10: Producer-Consumer Design Pattern Annotations Continued

Role ID: Annotation:

3 @ProducerConsumerPattern(ID=1,role=3,comment=“Consumer class - use
objects to be produced by the Role 1, the Producer class.”)

3a @ProducerConsumerPattern(ID=1,role=3a,comment=“Local instance of
Role 2, the Queue.”)

3b @ProducerConsumerPattern(ID=1,role=3b,comment=“Local instance of
consumed object.”)

3c @ProducerConsumerPattern(ID=1,role=3c,comment=“Call to pull method
of Role 3a, the local instance of the Queue. Pulls Role 3b, the
object to be consumed.”)

B.8 Two-Phase Termination Design Pattern

Table B.11: Two-Phase Termination Design Pattern Annotations

Role ID: Annotation:

1 @TwoPhaseTerminationPattern(ID=1,role=1,comment=“Thread(s)
declaration - thread(s) that will be checked for an interrupt in Role 2.”)

2 @TwoPhaseTerminationPattern(ID=1,role=2,comment=“Method running
the process.”)

2a @TwoPhaseTerminationPattern(ID=1,role=2a,comment=“In a loop
checking the latch - thread in Role 1 being checked for Role 2aa.”)

2aa @TwoPhaseTerminationPattern(ID=1,role=2aa,comment=“Thread in
Role 1 being checked if it has been interrupted.”)

2b @TwoPhaseTerminationPattern(ID=1,role=2b,comment=“After the loop,
a call to Role 4 that shuts down the thread.”)

3 @TwoPhaseTerminationPattern(ID=1,role=3,comment=“Method that will
contain functionality to set the latch - interrupt the thread in Role 1.”)

3a @TwoPhaseTerminationPattern(ID=1,role=3a,comment=“Actually setting
the latch to true - interrupting the thread in Role 1.”)

4 @TwoPhaseTerminationPattern(ID=1,role=4,comment=“Method that will
contain functionality to stop the thread in Role 1.”)

4a @TwoPhaseTerminationPattern(ID=1,role=4a,comment=“Actually
stopping of the thread in Role 1.”)

